Programming GPGPU with MapReduce

Wenguang CHEN
Tsinghua University
2010/1/15

Program GPU with CUDA

e CUDA is a revolutionary step in GPU
programming
—Much easier than OpenGL ,or other shader
languages, such as Cg

e However, it is still not very easy to
orogram with CUDA

— |t is not easy to do any parallel
programming

What makes parallel computing so
difficult

ldentifying and expressing parallelism

— Autoparallelizing has been failed so far

Complex synchronization may be required

— Data races and deadlocks which are difficult to
debug

Load balance...
Locality optimization

An ideal parallel programming model

Portable

Fast

Easy to program

Scalable

Fault-tolerant

Automatic load balancing
Versatile

No Silver Bullet

 |f we can not solve the parallel
programming in general
—Can we solve that for a specific
domain?
—Domain specific language(DSL)
e SQL
* MAP-Reduce

MapReduce Programming Model

e Borrows from functional programming

e Users implement interface of two functions:
map (in_key, iIn_value)
-> (out_key, iIntermediate value) list

reduce (out key, iIntermediate value list)
-> out_value list

Jeffrey Dean and Sanjay Ghemawat,
MapReduce: Simplified Data Processing on Large Clusters, OSDI'04: Sixth
Symposium on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

Map-Reduce Architecture

Input key*value Input key*value
pairs pairs
A 4 \ 4
map map
Data store 1 Data store n
(kéy 1, (key 2, (Key 3, (kéy 1, (key 2, (Key 3,
valIes...) ValIeSn.) valuels...) valules...) Valufs...) VFlues...)
== Barrier == : Aggregates intermediate values by output key |
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
A 4 A 4 A 4
reduce reduce reduce
final key 1 final key 2 final key 3
values values values

WordCount Program
in Map-Reduce

map(string key, string val):
/l key: document name
/I value: document content
for each word w in value:
emit_intermediate(w, “1"); mtermediate

Inpaurt

reduce(string key, iterator values):
/Il key: a word
// values: a list of counts
int result=0;
for each v in values:
result+=Parselnt(v);
emit(AsString(result));

l
kﬁ

@

N

M

D&
QQ

¢
(3*}

—

I

Y
TN
\

l
\f

klvklvk2v

kl:w

kdv k

k

Y
4

v

kv k3w

Cirouped

Ot

__.-"f - o
ﬁﬁmup by KE}'\.”
LY {

I

Elvow v

k2w

k3w

kd:vovow (k3w

B

Sy

'

®
_—

'

ole
'

MapReduce is promising

Easy to use
— Programmers only need to write sequential code

— Deal with fault tolerance and load balance automatically
which is a very desired feature for large scale computing

Dominated programming paradigm in Internet
companies

Originally support distributed systems, now ported
to GPU, CELL, multi-core

— Phoenix, Mars, Merge etc.

However, there are many dialects of
MapReduce

* Because of limited features provided by
different architectures

 nVidia GPU as an example
— No “host” function support
— No dynamic memory allocation

— Complex memory hierarchy make it difficult to
tune performance

MapReduce on Multi-core CPU
(Phoenix [HPCA'07])

Input

Split

Map

Partition

Reduce

Merge

Output

MapReduce on GPU
(Mars[PACT‘08])

Input
v —
Mapf:ount Extra phase to overcome
Prefixsum the lack of
7 dynamic memory
Allocate intermegliate buffer on G allocation
Map

7
Sort and Group
7

ReducECount Extra phase to overcome
Prefixsum T thelack of
7 dynamic memory
Allocate outptft buffer on GPU allocation
Reduce

v
Output

Program Example

 Word Count (Phoenix Implementation)

for (i = 0; i < args->length; i++)
{
curr_ltr = toupper(datali]);
switch (state)
{
case IN_WORD:
datali] = curr_ltr;
if ((curr_ltr<'A" || curr_Itr>'Z") && curr_Itr 1="\") {
datali] = 0;
emit_intermediate(curr_start, (void *)1, &data[i] - curr_start + 1);
state = NOT_IN_WORD;

}
break;

Program Example

* Word Count (Mars Implementation)

{

device_ void GPU_MAP_COUNT_FUNC
//(void *key, void *val, int keySize, int valSize)

do {

if (*line!1="") line++;
else {
line++;
GPU_EMIT_INTER_COUNT_FUNC(
wordSize-1, sizeof(int));
while (*line=="") {
line++;
}
wordSize = 0;

}

} while (*line !="\n");

__device__ void GPU_MAP_FUNC//(void

*key,
void val, int keySize, int valSize)
{
do {
if (*line!1="") line++;
else {
line++;

}

GPU_EMIT_INTER_FUNC(word,
&wordSize, wordSize-1, sizeof(int));
while (*line=="") {
line++;
}

wordSize = 0;

} while (*line !="\n");

Mars Speedup over CPU

 Speedup of Mars vs. Phoenix, according to
Mars paper

speedup of Mars vs. Phoenix

18
16 -

14 -

12 -

10 -

g |

c |

4

B _
o

I MM PVC 55 SM

4.5

3.5

2.5

15

3.5

Grouping Performance is Important

WordCount Time

10MB 20MB 40MB

Execution time of WordCount using Mars

mreduce
Waroup

Hmap

Mars: Using Bitonic Sort

 High complexity
— O(n(logn)”2)
e Unnecessary:

— The order of the intermediate key/value pairs is
usually not desired, as in the case of WordCount,
PageViewCount, etc...

HMM: Efficient MapReduce
Framework for GPU

e Goals
InTut — Better portability of Map-
Reduce on GPU
Map
— Better Performance
4
Reduce e Two key ideas:
v — Lightweight memory allocator
Output
— Uses hash table to group
HMM key/values instead of sorting

Dynamic Memory Allocation
on GPU

e Observations:
— No need for free()
* Memory can be freed at once at the end of a phase

— Small, regular size allocations

e Key/value lists are usually small (<=32byte)

Dynamic Memory Allocation
--Problems

e Correctness

— Two threads should not get the same memory
address

e Performance

— Contention

 Thousands, even millions of thread allocating
simultaneously (HMM uses 256*256 threads by default)

— Long latency

* The latency of accessing a global address takes 400
cycles

Dynamic Memory Allocation
-- Solutions

e Correctness

— use atomic operation
unsigned atomicAdd(unsigned * addr, unsigned iInc)

char * memory_ptr; //the pointer to the free memory space
void * malloc_from_memory_pool (int size){
return (char *)atomicAdd((int*)&memory_ptr, size);

}
e Performance

— take advantage of the fast shared memory

Grouping with Hash Table

e Low complexity:
—0(n)

* Closed hashing, enabled with dynamic
memory allocator

hash buckets

head ptr

v

key2 =3 value list with key2

» value list with key1

Problems

e Data race when different threads try to insert
into the same value list

— need a thread-safe list implementation

e The value lists and the value list nodes should
be dynamically allocated

— fortunately, we have the memory allocator

Dealing with Data Races

* No lock on GPU, but there is atomic CAS provided:

— atomicCAS(addr, old_val, new_val)

e If *addr==o0ld_val, then *addr=new_val. The compare and store
are executed atomically. The return value is *addr before the
operation.

— atomicCAS can be used to implement efficient lock-free
data structures, such as linked list

// inserting a new node into a list
Node * new_node=get_new_node();
While(1){
Node * local_copy_of list_head=list_head,;
new_node->next=local_copy_of list head;
if(atomicCAS(&list_head, local_copy of list head, new_node)==local_copy_of list _head)
break;

Benchmark Applications

E

Hist Histogram: generates the histogram of 9MB file, 10
frequencies of pixel values in t!\e red, pixels/map
green and blue channels of a bitmap
picture

MM Dense Matrix Multiplication: A*B=C, N=2048

where A, B are N*N matrices

SS Similarity Score: calculates the similarity 2048 documents,
between a set of d?cuments, given their 4in=128
vector representation

WC Word Count: count the number of times 40MB
each word occurs in a file
Kmeans K-means: K-means clustering algorithm 8000 points, 200
clusters, vector
dim=40

Benchmarks — under construction

e PLSA: Probabilistic Latent Semantic Analysis
 N-Body: N-body simulation

* [nverted Index

* Linear Regression

Speedup of HMM vs. Mars

8
7 -
6 -
W Hist
5 -
o MM
a mKmeans
B \WordCount
e HSimilarity
2 -
l -
O -

speedup of HMM vs, Mars

speedup of HMM vs. Mars on:
Histogram, MatrixMultiplication, Kmeans, WordCount, and SimilarityScore

Open Source

 You are welcome to try HMM and give us
your feedback!

—http://sourceforge.net/projects/mapp/

Conclusion

* Map-Reduce is a promising high level parallel
programming model for GPU
— Easy to write
— Fault-tolerant and load balancing
— Scalable to multiple cards
— Portable(ongoing)

Thanks!

