
Noname manuscript No.
(will be inserted by the editor)

Non-rigid Registration for Large Set of Microscopic

Images on Graphics Processors

Antonio Ruiz†, Manuel Ujaldon†,

Lee Cooper‡, Kun Huang‡

Received: date / Accepted: date

Abstract Microscopic imaging is an important tool for characterizing tissue mor-

phology and pathology. Large sets of microscopic images are usually required for 3D

reconstruction and visualization of tissue structure. Registration is essential for the

3D reconstruction from the stack of images. However, the large size of image datasets

proves to be a challenge for automatic registration. In this paper, we present a novel

method for completing this task more efficiently on graphics processors (GPUs) and

combine its features with parallel programming to achieve speed-up factors of up to

4.11x on a single GPU and 6.68x on a pair of GPUs using CUDA and pthreads versus

a typical C++ CPU implementation. Execution numbers are shown for a benchmark

composed of large-scale images coming from two different sources: Genetic studies

(16K × 16K pixels) and breast cancer tumors (23K × 62K pixels). It takes more than

12 hours for the genetic case in C++ to register a typical sample composed of 500

consecutive slides, which was reduced to less than 2 hours using two GPUs, in addition

to a very promising scalability for extending those gains easily on a large number of

GPUs.

1 Introduction

Characterizing the phenotypes associated with specific genotypes is critical for elucidat-

ing the roles of genes and gene interactions. Cellular and tissue structure morphologies

are aspects of phenotype that provide information necessary for understanding im-

portant biological processes such as cancer initiation in the tumor microenvironment

† Computer Architecture Department
University of Malaga. 29071 Malaga, Spain
Tel: +34 952 13 28 24
Fax: +34 952 13 27 90
E-mail: {aruiz, ujaldon}@ac.uma.es

‡ Biomedical Informatics Department
Ohio State University.
333 West 10th Avenue, Columbus, OH 43210, USA
Tel: +1 614 292 5607
Fax: +1 614 688 6600
E-mail: cooperl@ece.osu.edu, khuang@bmi.osu.edu

2

and the formation of neural networks in the brain cortex. Nevertheless, existing tech-

niques for obtaining high magnification 3-D information from biomedical samples are

rather limited. The commonly used confocal/multiphoton fluorescent microscopy pro-

vide three dimensional information but require the use of fluorescent markers and have

limited field of view. Therefore another fundamental approach to gather 3-D informa-

tion is to perform reconstruction using 2-D images obtained from tissue sectioning and

light microscope. The basis for this approach is the alignment of 2-D images of thin

serial sections using image registration [1–22].

The key challenge for image registration in this scenario is to compensate for the

distortion between consecutive section images that is introduced by the sectioning

process. Tissue sections are extremely thin (3 to 5µm) and delicate as a result. The

preparation process (i.e., sectioning, staining, and coverglass application) can introduce

a variety of nonrigid deformations including bending, shearing, stretching, and tearing.

At micron resolutions, even minor deformations become conspicuous and may prove

problematic when accuracy is critical to the end application. In order to compensate

for such deformations, a nonrigid registration is essential and success depends on es-

tablishing a large number of precise feature correspondences throughout the extent of

the image. This precision requires comparison of intensity information and is very time

consuming with popular comparison measures such as Mutual Information.

In this paper, we develop an effective high-performance computing method for

generating precise feature correspondences between microscopic images at the scale of

hundreds of millions to billions of pixels. For feature selection and matching in this

context, there are several challenges:

1. Feature rich environment. The textural quality of microscopic image content

provides a unique challenge to the problems of feature selection and matching.

Traditional feature detection schemes such as corner detection generate an over-

whelming abundance of features that are regular in appearance making matching

unrealistic.

2. Large-scale images. Currently high-resolution slide scanners can generate images

with resolutions of 0.46µm/pixel (with 40X objective lens) and possibly higher. At

this resolution, a shift of one millimeter corresponds to around 2,000 pixels. The

search for corresponding features are therefore almost unfeasible without a good

initialization.

3. Heavy computational requirements. A common approach for the registration

of large images is to conduct multiscale registration where the images are down-

sampled to multiple low-resolution images so that nonrigid transformation can be

computed and applied to the images with the next higher resolution. This requires

transformation of the free-floating image at each scale which is a nontrivial com-

putational task. For instance, in this paper we are dealing with images with sizes

up to 23K × 62K pixels. With a scale factor of two, this implies transformation of

an image containing about 12K × 31K pixels prior to the final stage.

In order to deal with these challenges, we develop a high-performance computing ap-

proach to registration comprised of fast rigid registration for initialization and an ef-

ficient and parallelizable algorithm for nonrigid registration with implementation on

graphics processing units (GPUs). Our approach has the following advantages:

1. GPU Implementation. Most importantly, we take advantage of the comput-

ing capacity of the GPU, which has become a cost-effective parallel platform to

3

implement grand-challenge biomedical applications [23,24]. CUDA (Compute Uni-

fied Device Architecture) offers an alternate programming model to the underlying

parallel graphics processor without requiring a deep knowledge about rendering or

graphics. The interface uses standard C code with parallel features to transform

the GPU technology to massive parallel processors for commodity PCs.

2. Fast Rigid Registration for Initialization. The nonrigid registration algorithm

is initialized by a fast rigid registration algorithm that we have previously devel-

oped. This algorithm uses conspicuous anatomical regions (e.g., blood vessels) as

high-level features and the rigid transformation is derived using a voting scheme in

the Euclidean transformation space. It is highly efficient and accurate for common

histological images. In addition, it can accommodate arbitrary rotation and trans-

lations. This provides us with a good initialization for the nonrigid registration and

the search space for point correspondence is significantly reduced.

3. Feature Selection. Point features for precise matching in nonrigid registration are

selected based on neighborhood complexity rather than the presence of geometric

content such as corners. This not only reduces computational burden but also allows

the user to gain a more uniform distribution of features.

4. Fast Normalized Cross-Correlation for Precise Matching. Precise feature

matching is based on the normalized cross-correlation (NCC) between tile neigh-

borhoods in each image. NCC calculation can be implemented efficiently using fast

Fourier transform (FFT) resulting in a very fast execution as compared to measures

like mutual information. Additionally NCC has an intuitive interpretation which

simplifies the selection of threshold parameters used to discriminate good matches

from bad.

5. Single Transformation Output. For precise matching, the Euclidean transfor-

mation parameters obtained from rigid initialization are used to locate and trans-

form corresponding neighborhoods to avoid applying an expensive rigid transfor-

mation to an entire image.

6. Parallelization for Precise Matching. The process of precise matching is em-

barrassingly parallel, lending itself to execution on multiple cores, sockets, or a

computing cluster.

In this paper, we identified the computation of the cross-correlation for

feature matching as the most time consuming step in the nonrigid registra-

tion pipeline and focused on using GPU to improve the computing for it

(shown in Figure 8. We demonstrate results for our method by comparing serial and

parallel implementations on both CPU and GPU, using a variety of parameter choices

to explore the efficiency and scalability of our approach (see Table 4.) Our benchmark

of image datasets (see Table 5) is taken from two of our quantitative phenotyping

projects. The first project is a morphometric study on the role of the retinoblastoma

gene (a well-known tumor suppressor) in mouse placenta development. In this study,

three control placentas and three mutant placentas with Rb gene deletion were ob-

tained. Each sample was sliced into 5µm sections and each section was stained using

standard hematoxylin and eosin staining. The stained sections were digitized using an

Aperio ScanScope high resolution scanner with a 20X objective lens which produces

a resolution of 0.46µm/pixel. The six samples yielded more than 3,000 images with

typical dimensions 16K × 16K pixels for a total of more than three terabytes (uncom-

pressed) of data. The second project is part of ongoing work studying the breast cancer

4

tumor microenvironment in mice. Images from this study are typically 23K×62K pix-

els and around four gigabytes in uncompressed form.

The paper is organized as follows: Sections 2 through 4 provide an overview of the

image registration method including a review of our fast rigid registration algorithm

in Section 2, a description of the feature selection and precise matching process in

Section 3, and a brief overview of image transformation in Section 4. A summary of

GPU architecture and a description of our implementation is provided in Section 5.

The experimental setup is presented in Section 6. Performance results and analysis are

contained in Section 7. The paper concludes in Sections 8 through 10 with a discussion

on related work and future directions.

2 Fast Rigid Registration for Initialization

Although the development of our rigid registration algorithm is outside the scope of this

paper, we provide a brief review of it here for completeness as it is an important part of

our high-performance approach to nonrigid registration; the initialization provided by

this rigid registration reduces the extent of search used for precise matching in nonrigid

registration and in turn significantly reduces computation.

The basis of the rigid registration algorithm is the matching of high level features,

regions that correspond to specific anatomical structures such as blood vessels or mam-

mary ducts. There are several advantages to using high level features over the more

primitive features generated by methods such a corner detection. First, high-level fea-

tures are easy to segment as they often correspond to relatively large contiguous regions

of pixels with similar colors. All that is required for extraction is a simple color classi-

fication of pixels and a sequence of morphological operations [25], both of which admit

optimized implementations in commonly available image-processing libraries. This ex-

traction can also often be performed on downsampled representations of the original

images without loss of fidelity (For instance, we operate on 5x images that are

downsampled from the 20x images by simple decimation. Since the rigid

registration only serves as an initialization to the nonrigid stage, the loss

of information and aliasing by downsampling is not significant for the fi-

nal results). Second, even in microscopic images the number of high-level features

is usually limited, keeping the number of possible matches reasonable. Finally, these

features can be matched based on characteristics such as shape and size, and are there-

fore “global” meaning that the matching process is not limited to local search and can

therefore accommodate the full range of possible misalignments between images. The

use of characteristics such as size and shape as matching criteria also reduces match

ambiguity.

The key issue for any feature matching scheme is the detection of mismatches.

To this end, we have developed two approaches. Any two pairs of matched features

can generate a purported rigid transformation specified by the rotation angle θ and

translation T if their intra-image distances are consistent. It can be conceived that

a large portion of the transformations based on likely matchings should concentrate

around the true parameters in the Euclidean transformation space. Therefore, a voting

process can be adopted to select the optimal rigid transformation that agrees with the

majority of matchings. An example of this process is shown in Figure 1. In the case

where the total number of features present in the image is small (e.g., less than 10),

5

(a) (b) (c) (d)

(e) (f)

Fig. 1 Fast rigid registration using high-level features. (a, b) 5x downsampled placenta images
(originally 20x), approximately 4000×4000 pixels. (c) Extracted regions of pixels corresponding
to blood regions for the image in (b). Only 50-70 such regions are selected for the matching
process. (d) Closeup of result in (c). (e) Voting histogram for rotation angle. The difference
between the voting result and a manual registration is less than 0.2◦. (f) Histogram for the
translation components x and y. The differences between the voting results and a manual
registration are each less than 10 pixels.

the results of voting may be less reliable. For this reason, we have also developed a

graph-theoretic approach for feature matching that is based on a similar principle [20].

This algorithm has reasonable execution times even with a modest implementation.

Using Matlab, the rigid parameter estimates for the example in Figure 1 were calculated

in less than 4 seconds on a system similar to the one described in Section 6.

3 Feature extraction and matching

With the rigid initialization described, we turn our attention to the nonrigid regis-

tration process. Correcting nonrigid distortion to the accuracy necessary for end ap-

plications in quantitative phenotyping requires the establishment of a large number

of precise correspondences. These correspondences should also be fairly distributed

throughout the areas of the image that are of interest, in order to produce a result

that has uniform quality. We address these considerations in our approach to feature

extraction and matching where we use sampling and rigid initialization parameters to

identify corresponding tile regions and compare them using NCC.

3.1 Feature extraction

The first issue in feature extraction is the selection of unambiguous features that are

likely to result in specific and accurate matchings. This is especially important for

matching in nonrigid registration since using the collection of matches to infer some-

thing about the quality of any individual match is difficult due to the freedom and

6

minor scale of nonrigid distortion. In this sense the matchings in nonrigid registration

are local in nature: the only information available to judge their quality comes from

the feature neighborhood.

In our case, we want to select tiles that have rich content, a mixture of different

tissues or tissue and background that form a distinctive appearance and are likely to

produce very specific matches. To enforce this, we select tiles whose variance meets

a certain minimum threshold. That is, for any feature point p with coordinate
[x

y

]

centered in the W × W -pixel window we require

1

W 2 − 1

∑

i,j

(t(i, j) − t̄)2 ≥ σ2 (1)

where t is the template, a grayscale representation of the p-centered pixel window

with mean value t̄, and σ2 is a variance threshold. There are cases where the variance

threshold can be met and an ambiguous result can still occur (consider matching a

small template with upper half white and lower half black inside a similar but larger

template) although these type of cases are hardly ever encountered in practice.

To keep the total number of features reasonable and attempt even feature distri-

bution, we sample features uniformly over the image space with a W × W tiling. For

example, in the 16K × 16K placenta images, we would typically tile in the range of

150-350 pixels to generate a total of 2025-11236 possible features, the large majority

of features are discarded due to insufficient variance. With a set of features identified

in one image, their unique correspondences in the next image are simple to determine.

3.2 Feature matching

For any selected feature point p1 with coordinate
[x1

y1

]

in the first image, we first select

a B × B-pixel window centered at p1. This window is transformed to grayscale and

rotated by the angle θ obtained from the rigid registration initialization. The central

W1 × W1-pixel patch is then used as the p1 matching template for identifying p2, the

correspondence point of p1 in the second image. B is calculated from θ and W1, taken

large enough to accommodate the template.

The coordinate p2 can be estimated using

p′2 =

[

x2

y2

]

=

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

] [

x1

y1

]

+ T (2)

with T being the translation vector obtained from the rigid registration initialization.

A larger W2 × W2-pixel template centered at p′2 and designated as the search window

is taken from the second image. The NCC between the template and search window is

computed, and the center of the area corresponding to the highest NCC value is set as

p2. If this maximum value exceeds a threshold (usually 0.8 or greater), then the match

is considered successful and p1, p2 are recorded as a correspondence.

This process is illustrated in Figure 2. The choice of W1 and W2 is based on

the severity of the deformation as well as computational capacity. Empirically we set

W2 = 2W1. A large deformation requires a large search window size of W2. We tested

different choices of W1 and W2 during our experimental evaluation (see Section 7),

with some of them favouring the CPU and/or the GPU (see Table 4).

Commonly used similarity measures for intensity information other than NCC in-

clude summed square of difference (SSD) and mutual information (MI). SSD is not a

7

(a) (b) (c) (d)

Fig. 2 The process of feature matching. (a) First image. (b) First image rotated a given
angle provided from the rigid registration. (c) Local sanity region selected within first image
(W1 × W1-pixel template patch or feature window). (d) Search region within second image
(W2 × W2-pixel search window).

good choice for microscopic images since the content tends to be discrete (e.g., sharp

boundaries between cell nucleus and cytoplasm and cell membrane). MI is commonly

used as a metric in gradient search strategies but the cost of joint-histogram compu-

tation makes it too expensive for exhaustive search. We choose NCC since it is not

only robust in identifying structural similarity but it is also highly efficient when im-

plemented with fast Fourier transform. NCC is also robust to intensity variation

between the slides caused by non-uniform thickness and staining time. Fur-

thermore, NCC values have an intuitive interpretation, making threshold parameter

selection easier.

3.2.1 Computing normalized cross-correlation (NCC)

The large number of features that exist within a typical dataset makes efficient compu-

tation of NCC critical. Additionally, rather than using a search strategy, we compute

NCC between template and search window pairs at all spatial offsets to avoid the

problem of local minima.

Given a template t size W1 ×W1 with mean t̄, and search window s size W2 ×W2,

W2 > W1, the NCC between t and s is the quotient of covariance and individual

variances

ρ(u, v) =
∑

x,y

{t(x − u, y − v) − t̄}{s(x, y) − s̄u,v}

({t(x − u, y − u) − t̄}2{s(x, y) − s̄u,v}2)
1

2

(3)

where s̄u,v is the mean of the search window portion overlapping the template at offset

(u, v).

For calculating normalizing factors in the denominator we use the method of run-

ning sums presented in [26]. This avoids the expensive local calculations of search

window mean and variance for the template overlap region as the template is shifted

through each of (W1+W2−1)2 positions, reducing the operation count from 3W 2
2 (W1−

W2 + 1)2 to approximately 3W 2
1 .

The unnormalized cross-correlation from the numerator is calculated via the con-

volution theorem of the Discrete Fourier Transform that relates the product of DFT

spectra to circular convolution in the spatial domain. For cross correlation we are in-

terested in ordinary convolution so t and s are padded with zeros to size W1 + W2 − 1

prior to forward transform to ensure that the circular overlap portions of the convolu-

tion result are null. Figure 3 shows some randomly selected examples of the matched

regions.

8

(a) (b) (c)

(d) (e) (f)

Fig. 3 (a-f) Randomly selected matched points with the image patches around them between
the two images.

4 Image Transformation

The collection of point correspondences generated by the precise matching process

provides the information needed to calculate a mapping that transforms one image

into conformation with the other. A variety of nonrigid mappings are used in practice,

differing in computational burden, robustness to erroneous correspondences, and exis-

tence of inverse form. High-performance implementation of the transformation process

is a non-trivial task and is not addressed in this paper.

4.1 The polynomial transformation

In choosing a transformation type, we seek something that is capable of correcting

complex distortions, robust to match errors, admits a closed inverse form and is com-

putationally efficient to apply. Of the commonly used nonrigid mapping types such as

thin-plate spline, local weighted mean, affine, polynomial, and piece-wise variations we

choose polynomial mapping. Thin plate spline provides a minimum energy mapping

which is appealing for problems involving actual physical deformation, however perfect

matching at correspondence locations can potentially cause large distortion in other

areas and excessive mapping error if an erroneous correspondence exists. The lack of

an inverse form means the transformed image must be calculated in a forward direc-

tion, likely leaving holes in the transformed result. Methods such as gradient search

can be used to overcome this but at the cost of added computation which can become

astronomical when applied for the transformation at every pixel in a gigapixel image.

Kernel-based methods such as local weighted mean require a uniform distribution of

correspondences. Given the heterogeneity of tissue features this distribution cannot

always be guaranteed.

Polynomial warping admits an inverse form, is fast in application, and from our

experience is capable of satisfactorily correcting the distortion encountered in sectioned

images. Polynomial warping parameters can be calculated using least squares or least

squares variants which can mitigate the effect of matching errors. Affine mapping offers

similar benefits but is more limited in the complexity of the warpings it can represent.

In our algorithm, we use second degree polynomials. Specifically, for a point (x, y)

in the reference image, the coordinate (x′, y′) of its correspondence in the second image

9

Fig. 4 An example of the 3D reconstruction of the mouse placenta for a mutant sample. Here
we only show a small block of the reconstruction with 30 sections in high resolution. The
rendering is obtained using the volumetric rendering software VolView. The front corner was
virtually excised to expose interior cross sections.

is
{

x′ = a1x2 + b1xy + c1y2 + d1x + e1y + f1,

y′ = a2x2 + b2xy + c2y2 + d2x + e2y + f2,
(4)

Since each pair of matched point correspondence provide two equations, we need at

least six pairs of point correspondences to solve for the coefficients in (4). In practice,

we obtain a much larger number of point correspondences.

4.1.1 3D reconstruction

For 3D reconstruction applications, where a sequence of images are to be registered,

the matching process is applied successively to each ordered pair in the sequence.

Images are transformed starting at one end of the sequence and at each stage the

transformations from prior image pairs are propagated in order to achieve a coherent

set of transformed images1.

The workflow for the entire registration process is summarized in Figure 8. Recon-

struction results from 50 sections of a mutant placenta are illustrated in Figure 4. Due

to the limitations of the rendering software in handling sets of large images, only a

portion of the reconstruction can be rendered at any one time.

5 Implementation

The performance of algorithms on GPUs depends on how well they can exploit paral-

lelism, closer memory, bus bandwidth, and GFLOPS.

1 The pairwise registration in some cases is not sufficient for 3D reconstruction. The 3D
structural constraints may have to be imposed and the discussion is outside the scope of this
paper.

10

Partition
Memory
Video

Partition
Memory
Video

Partition
Memory
Video

Partition
Memory
Video

Partition
Memory
Video

Partition
Memory
Video

Blending

L2 Cache

Z−buffering

Antialiasing

Blending

L2 Cache

Z−buffering

Antialiasing

Blending

L2 Cache

Z−buffering

Antialiasing

Blending

L2 Cache

Z−buffering

Antialiasing

Blending

L2 Cache

Z−buffering

Antialiasing

Blending

L2 Cache

Z−buffering

Antialiasing

Triangle Setup

Lines interpolation

Clipping / Culling

Filling inscribed areas

Vertex threads Geometry threads Pixel threads

ROP 0 ROP 1 ROP 2 ROP 3 ROP 4 ROP 5

cluster 0 cluster 7cluster 1 cluster 2

3, 4, 5, 6

16 color
and Z
samples
per ROP

Filtered Polygons

Assembled Polygons

Fragments

L1 Cache L1 L1L1

4 Texture Address Units

DRAM
(2x 900 MHz)

GDDR3

(1350 MHz)

Main

memory

Unified
shaders

processing
texture
and
Scalar

Issue
instructions

GPU front−end

Vertices and attributesmemory)
(to video

16 SP 16 SP 16 SP

CPU

Thread
Processor

16 Streams Processors

HOST

4 TAU 4 TAU 4 TAU

8 TFU8 TFU8 TFU8 Texture Filtering Units

Textures

(600 MHz)

64 bits
(4 pixels/clock)

64 64 64 64 64
(4 p / c) (4 p / c) (4 p / c) (4 p / c) (4 p / c)

th
re

a
d

s

PCI express port

Fig. 5 The block diagram of the Nvidia G80 architecture, the GPU we used during our
experiments. The program, decomposed in threads, is executed on 128 streams processors
(central row). The data are stored on L1 caches, L2 caches and video memory (lower rows).

Parallelism: Programs running on GPU are decomposed into threads and are exe-

cuted on a massively parallel multiprocessor composed of 128 cores or stream processors

(see central row in Figure 5).

Memory access: Data is stored on L1 caches, L2 caches and video memory (see

lower rows in Figure 5), with closer memory being faster. Spatial locality is best ex-

ploited by caches, which are around a thousand times larger on the CPU, whereas

temporal locality benefits the GPU, whose architectural rationale and programming

model are inspired by the producer/consumer paradigm.

Bus bandwidth: A state-of-the-art 2007 graphics card delivers a peak performance

memory bandwidth around 80 GB/sec., as compared to 10 GB/sec. for CPU. This is

11

SIMD multiprocessor 16

SIMD multiprocessor 1

SIMD multiprocessor 2

Texture Cache

Regs RegsRegs

Shared Memory (16 KB)

Core 1 Core 8Core 2

Global Memory (GDDR − 1.5 GB)

Issue
Instr.

SIMD parallelism Kernels

es
ca

la
bi

lit
y

F
ut

ur
e

Fig. 6 The CUDA hardware interface for the GPU.

mainly due to its wider data path (384 bits, decomposed into six partitions of 64 bits

in Figure 5).

Computational units: The GPU capacity for floating-point operations exceeds

500 GFLOPS, in contrast with around 10 GFLOPS for a 2007 state-of-the-art CPU.

This advantage is a result of design for the color and position interpolations that are

required for performance graphics applications.

We combine these outstanding features of the GPU with CPU to create a bi-

processor platform that balances workload and optimizes the execution of our nonrigid

registration. The rest of this section focuses on the GPU implementation.

5.1 The CUDA programming model

The CUDA (Compute Unified Device Architecture) [27] programming interface consists

of a set of library functions which can be coded as an extension of the C language. The

CUDA compiler generates executable code for the GPU, which is seen as a multicore

processor resource by the CPU. CUDA is designed for generic computing and hence it

does not suffer from constraints when accessing memory, though the access times vary

for different types of memory.

5.1.1 Computation Paradigm

General-purpose on GPUs (GPGPU) [28] is designed to follow the general flow of the

graphics pipeline (consisting of vertex, geometry and pixel processors - see Figure 5),

with each iteration of the solution being one rendering pass. The CUDA hardware

interface (see Figure 6) attempts to hide all these notions by presenting a program as

a collection of threads running in parallel. The elements for this approach are:

– A warp is a collection of threads that can actually run concurrently (no time

sharing) on all of the multiprocessors. The size of the warp (32 on the G80 GPU)

12

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

Thread (0,3)Grid 2

Grid 1

Block (0,1)Block (0,0)

Block (1,0) Block (1,1)
Kernel 2

Kernel 1

Hardware on GPU (device)Software on CPU (host)

Block (0,0) Block (0,1) Block (0,2)

Block (1,2)Block (1,1)Block (1,0)

The input program The parallel execution

Fig. 7 The CUDA programming model. In this example, a program is decomposed into two
kernels, each implemented through a grid, with the first grid composed of 2x3 blocks, each
containing 3x4 threads executed in a SIMD fashion.

is less than total available cores (128 on G80) due to memory access limitations.

The programmer decides the number of threads to be executed, but if there are

more threads than the warp size, they are time-shared.

– A block is a group of threads that are mapped to a single multiprocessor. Since each

multiprocessor has multiple cores (8 on the G80) and a shared memory, threads

in a block are executed together and can efficiently share memory. All threads of

a block executing on a single multiprocessor divide its resources equally amongst

themselves, with each thread and block having a unique ID accessed during its

execution to process different sets of data in a SIMD (Single Instruction Multiple

Data) fashion.

– A kernel is the core code to be executed on each thread, which performs on different

sets of data using its ID. The CUDA programming model does not allow you to

select a different kernel to be executed on each of the multiprocessors. The hardware

architecture, however, allows multiple instruction sets to be executed on different

multiprocessors, so this may be simulated using conditionals.

– A grid is a collection of all blocks in a single execution. That way, a program is

decomposed into kernels, each implemented through a grid which is composed of

blocks consisting of threads (see Figure 7).

A single block should contain 128-256 threads for an efficient execution. The max-

imum possible thread total is 512. Other hardware limitations are listed on Table 1,

where we have ranked them according to impact on the programmer’s job and overall

performance based on our experience.

5.1.2 Memory and registers

In CUDA, all threads can access any memory location, but as expected, performance

will increase with the use of closer shared memory whenever data to be collectively

read by threads within a block belong to different memory banks. The use of shared

memory is explicit within a thread and cannot exceed 16 Kbytes. Optimizations using

13

Table 1 Major limitations for the CUDA programming model on the Nvidia G80 GPU used
during our experimental study. The last column assesses its importance according to the impact
on the programmer’s job and overall performance.

Parameter Limit Impact

Multiprocessors per GPU 16 Low
Processors / Multiprocessor 8 Low
Threads / Warp 32 Low
Thread Blocks / Multiprocessor 8 Medium
Threads / Block 512 Medium
Threads / Multiprocessor 768 High
32-bit registers / Multiprocessor 8192 High
Shared Memory / Multiprocessor 16 KB High

Table 2 Constraints in memory addressing (first five rows) and maximum performance (last
two rows) reached by the CUDA programming model in its latest version (1.1, as of December
2007).

Parameter Value

Constant memory / multiprocessor 64 KB.
Maximum sizes of each dimension of a block 512x12x64
Maximum sizes of each dimension of a grid 64K x 64K x 1
CUDA maximum memory pitch 256 KB.
CUDA texture alignment 256 bytes
Geometrical performance 3*108 triangles/sc.
Fill-rate (textural performance) 192*108 texels/sc.

shared memory may speed-up the code up to a 10x factor for vector operations, and

latency hiding up to 2.5x [29]. Other performance issues are summarized in the last

two rows of Table 2.

The role of 32-bit registers becomes more important as a limiting factor for the

amount of parallelism we can exploit, rather than as the conventional mechanism to

hide memory latency. A multiprocessor contains 8192 registers, each owned exclusively

by a thread. Registers should be split among the threads so that the number of threads

created reaches the maximum occupancy on each multiprocessor given the constraints

outlined in Tables 1 and 2. For example, if a thread consumes 10 or less registers, we

may have up to 819 threads, but only 768 are allowed on a multiprocessor and only

512 are allowed for a block: A possible solution is to build 3 blocks of 256 threads each.

Reversely, if a thread consumes 16 registers, a maximum of 512 threads is allowed

(512x16=8192), and all threads may belong to a single block.

5.1.3 Developing in CUDA

A typical CUDA development cycle is as follows. First, the code is compiled using

a special CUDA compiler that outputs the hardware resources (registers and local

shared memory) that are consumed by the kernel. Using these values, the programmer

determines the number of threads and blocks that are needed to use a multiprocessor

efficiently. If a satisfactory efficiency cannot be achieved, the code needs to be revised

to reduce the memory foot print (registers and local shared memory). Due to the high

14

Table 3 Percentage weight on average for each of the computational stages before and after
porting to the GPU.

Computational phase CPU GPU

Two forward FFTs 68% 74%
Point-wise multiplication 3% 2%
One inverse FFT 29% 24%

FLOPS performance of the streaming processor, memory access becomes the bottleneck

in our registration algorithm.

5.2 Image registration on the GPU

The workflow for our registration algorithm is summarized in Figure 8. From a per-

formance perspective, the most interesting phase is the set of Fast Fourier Transforms

(FFTs) used to compute the normalized cross-correlations for precise point matching

in nonrigid registration, since they entail most of the execution time. For example, in

our experiments registering a pair of 23K x 62K images on the CPU, more than 60%

of the total running time is spent in computing normalized cross-correlation.

We optimize this process by implementing it on the GPU (see section 5.2.1 below),

including the two forward FFTs and the subsequent inverse. The point-wise multiplica-

tion of FFT spectra which is required between the forward and inverse transforms was

also implemented on the GPU to save data movement between processors and to take

advantage of higher arithmetic intensity versus computation on the CPU (see Table

6). Table 3 depicts the percentage weight for these operations on each platform.

The remaining parts of the registration algorithm including voting, variance calcula-

tions, and simple transformations (e.g. rotating) did not show any significant speed-up

on the GPU for three major reasons:

1. They were already computationally cheap on the CPU.

2. More importantly, it was remarkable how much time was required to ship code

and data back and forth between the CPU and the GPU through the memory bus,

hypertransport link, and PCI-express controller (see Figure 10). This cost could

not be amortized during the subsequent computation despite of the high GFLOPS

rate.

3. Most of these operations contain conditionals and are not arithmetic intensive,

which makes them more appropriate for the CPU processor. Additionally, this

enables our bi-processor platform for a more balanced execution.

5.2.1 Normalized cross-correlation using CUDA

The normalized cross-correlation can be efficiently implemented on the GPU using the

CUDA programming model. Our computation strategy is based on the theorem that

circular convolution in geometric space amounts to point-wise multiplication in discrete

frequency space. This way, using the CUFFT library [30] as an efficient direct/inverse

Fast Fourier Transform implementation, Fourier-based correlation can be more efficient

than a straightforward spatial domain implementation, and allows us to leverage the

15

Transforms

Rotate Selected

Larger Window

Use Matched
Patches to

Nonrigid
Transforms

Compute

Regions to a
Match Rotated

Regions

Selection local
Sanity Regions

High−level

Extraction
Feature

Matching
Feature

Computing
Rigid

Registration

Optimal Rigid
determine
Voting to

* Direct FFT on second image.

* Matrix−Matrix product

 (on complex numbers)

* Inverse FFT on resulting image.

* Direct FFT on first image.

3D Reconstruction
Output:

implemented on the GPU:

R
ig

id
 R

eg
is

tr
at

io
n

N
on

ri
gi

d
 R

eg
is

tr
at

io
n

Normalized
cross−correlation

Input images

Fig. 8 The workflow of our image registration algorithm, which consists of two stages: rigid
registration and nonrigid registration. Rounded boxes are independent local operations that
can be straightforwardly carried out in parallel. The most computationally demanding phase
is selected to run on the GPU for a much faster execution.

floating-point power and parallelism of the GPU without having to develop a custom,

GPU-based implementation.

The FFT is a highly parallel ”divide and conquer” algorithm for the computation of

the Discrete Fourier Transform of single or multidimensional signals. The convolution

theorem applies to an image (search window) and convolution kernel (template window)

that share the same sizes. In cases like ours where the image is bigger than the kernel,

the kernel has to be expanded to the image size as shown in Figure 9. Also, ordinary

convolution requires the template and search windows to be padded with zeros on the

bottom and right borders as anticipated in Section 3.2.1.

The 2D-FFT dimensions are fundamental in CUDA for optimizing performance.

When the template and search window are multiples of either a power of two or a

small prime number, the memory footprint generated by the CUDA algorithm mini-

mizes conflicts accessing banks on shared memory and performance increases. For the

counterpart C++ implementation on the CPU we have used FFTW [31], one of the

most popular and efficient CPU-based FFT libraries, for a fair comparison with the

GPU results. FFTW also favours certain 2D-FFT dimensions, and the optimal cases

arise when the sum of the template window and the search window sizes minus one

is a power of two. With a careful selection of FFT dimensions, we have created a

benchmark fulfilling most of these rules on both CPU and GPU implementations. Ta-

ble 4 summarizes all sizes selected for our experimental evaluation and evaluates their

adequacy for each type of processor.

For the cases in which the data size cannot fulfill the previous rules, FFTW and

CUFFT provide a simple configuration mechanism called a plan that completely spec-

ifies the optimal - that is, the minimum floating-point operation - plan of execution

for a particular FFT size and data type. The advantage of this approach is that once

the user creates a plan, the library stores on file whatever state is needed to execute

the plan multiple times, thus avoiding the penalty of carefully planning the trans-

forms at run-time. For example, with a template window equal to 350x350 pixels and a

16

9
8

8
7

7
6
567

35 4
456

4
5
6

4
3

5

1
3 2
2

0

6
5 4

45
3

6 5
4

4 3
5

3 2
2 1

10x10 output result

decomposed into 10x10 tiles
40x40 large input image

10x10 search window (tile)

6 7
86

8 9
7

7

3 4 5
654

1 2
2 3
3 4
4 5

65

6 7
6
7

7
8 9

8

1
2 3

2

3 4
4 5
5 6

3 4
4 5 6

5

5

5

0 0 0 0 0
00000

0 0 0 0 0

0
0

0 0 0
0
0
0
00

0
0

0
0
0
0

0
0 0 0

0
0
0
00

0
0

0
0
0
0

0
0 0 0

0
0
0
00

0
0

0
0
0
0

0

0
0 0

0 0
0 0

0
0
0
0
0
0

(convolution kernel)
5x5 template window

expand

te
m

p
la

te
 w

in
d

o
w

 s
iz

e

se
a

rc
h

 w
in

d
o

w
 s

iz
e

tr
an

sp
os

e

to compute the
final result

by transposed

Multiply search
window elements

template window.
Then add them up

(ZOOM)

template expanded to 10x10 size

Expanded template transposed

Fig. 9 The computation of FFT-based normalized cross-correlation. The template window
has to be expanded to the search window size and convolution with the expanded kernel is
equivalent to the one with the initial kernel. The example is shown for a large image having
40x40 pixels and decomposed into 4x4 tiles, thus resulting a search window of 10x10 pixels.
The template window has 5x5 pixels, half of the search window on each dimension as in our
registration algorithm.

Table 4 Different sizes used for the template (feature) and search windows in our registration
algorithm (in pixels). We also include an evaluation about whether those sizes contribute to
perform further optimizations in the corresponding CPU and GPU codes, considering the
libraries we use during the implementation: FFTW on the CPU and CUFFT on the GPU. (*)
This slot is partially in favour of the GPU because 749 is a multiple of seven, a small prime
number.

Input image: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large

Template window (in pixels) 171 250 342 342 500 683
Search window (in pixels) 342 500 683 683 1000 1366
Aggregate (template+search-1) 512 749 1024 1024 1499 2048
CPU friendly (FFTW library) Yes No Yes Yes No Yes
GPU friendly (CUFFT library) Yes (*) Yes Yes No Yes

search window equal to 700x700 pixels, FFTW takes around 0.7 seconds, whereas the

pre-planned computation takes only 0.32 seconds with a previous 6 seconds penalty

required to pre-compute the plan (a cost which can later be amortized by loading the

plan at run-time on subsequent 2D transforms of the same size).

17

6 Experimental Setup

6.1 Input data set

In order to evaluate our optimization techniques and implementation methods, we

applied our registration algorithm to a series of microscopic images of consecutive sec-

tions of (1) mouse placenta for a morphometric study on the role of the retinoblastoma

gene and (2) mammary gland for studying the breast cancer tumor microenvironment

[16]. For details about these sets of images, see Table 5. The goal in both cases is to

reconstruct 3D tissue models for the study of microanatomy.

Table 5 The set of images used as input data sets for our registration algorithm.

Field of Research area and Mouse Computational Image Number
study biomedical goals source workload size (pixels) of slides

Genetic Role of a gene Placenta Medium 16K x 16K 100

Oncology Breast cancer tumor Mammary Large 23K x 62K 4

6.2 Hardware

Our application for automatic registration was implemented on a GPGPU visualization

node where the features of dual-core AMD Opteron 2218 CPU are combined with dual-

socket high-end Nvidia Quadro FX 5600 GPU (see Figure 10). The CPU is endowed

with 4 GB of DDR2 DRAM running at 667 MHz, whereas each of the dual GPUs

contains 1.5 GB of on-board GDDR3 DRAM at 1600 MHz (see remaining features

in Table 6). This leads to a total available DRAM memory of 7 GB. The system is

completed with a 750 GB, 7200 RPM local SATA II hard disk with 16 MB cache and

an InfiniBand card for communication purposes.

In our experiments, we do not consider the time for reading the input images from

file. This time can be partially hidden by overlapping I/O communications with internal

computations on the GPUs due to the asynchronous communications supported within

CUDA 1.1. In addition, we have seen shared I/O slightly affecting the computational

time. To minimize this variation, several runs were performed for each experiments,

taking the average among all of them.

6.3 Software

The GPU was programmed using the CUDA Programming Toolkit, version 1.1 (De-

cember, 2007), and for the cases where we used two GPUs, pthreads were used to run

the code on each GPU.

On the CPU side, we used the Microsoft Visual Studio 2005 8.0 C++ compiler.

Matlab 7.1 was also used to validate the results from our implementation as well as to

provide the departure sequential execution time.

18

Table 6 Summary of the major features of our high-end GPU from Nvidia.

GPU feature Value

Model Quadro FX 5600
Core clock frequency 600 MHz
Stream processors clock 1.35 GHz
Manuf. technology 90 nm

Video memory feature Value

Clock frequency 1.6 GHz
Bus width 384 bits
Bandwidth 76.8 GB/sc
Memory size 1.5 GB

H
yp

er
T

ra
ns

po
rt

C
on

tr
ol

le
r

To Southbridge

P
C

I−
ex

pr
es

s
co

nt
ro

lle
r

SATA−II
Disk
Local

1.
5

G
B

.
38

4

G
D

D
R

3

384

4 GB/s.
Graphics card

G
ra

ph
ic

s
ca

rd

4
G

B
/s

.

3 GB/s

Text. cache

F
X

 5
60

0
Q

ua
dr

o
T

ex
t.

ca
ch

e

FX 5600
Quadro

co
nt

ro
lle

r
P

C
I−

ex
pr

es
s

controller
GigE

To Northbridge

co
nt

ro
lle

r
S

A
T

A
−

II

Southbridge

Northbridge

nForce 4

nForce430

controller

G
P

U

GPU

1.
6

G
H

z

1.6 GHz

1.5 GB.

GDDR3

750 GB.

76 GB/s.

76
 G

B
/s

.

PCI−express

To
Internet

1 GB/s
GigE

and PFS

DDR2 4 GB.
10.6 GB/s.

O
pt

er
on

 S
oc

ke
t f

or
 C

P
U

10 GB/s

1 GHz

2 GB/s.
(dual port)
HCA card

PCI−express x8
Infiniband

L1 L1

1 GHz

4 GB/sController Controller
DDR2 HyperTransp.

ALU FPU ALU FPU

cache cache
1 MB. L2 1 MB. L2

Core 1 Core 2

To other nodes

DRAM memory modules

Fig. 10 The block diagram for our computing node, which integrates one CPU and two GPUs.

7 Empirical Results

A broad number of experiments were conducted on one hundred images in the placenta

image set and four images for the mammary image set as reflected in Table 5.

7.1 Image registration results

Direct evaluation of the quality for registering microscopic images is a diffi-

cult task due to the lack of ground truth and the validation of the algorithm

19

Fig. 11 (a) An example of 3D reconstruction of the mouse placenta. Since the images are
large, we only show a small fraction of the reconstructed 3D model from 30 sections. (b-
e) Registration of mouse mammary gland images: (b) a 1000 × 1000-pixel patch from the
reference image; (c) the corresponding 1000× 1000-pixel patch from the floating image; (d)the
image patch from the floating image after the nonrigid transformation; (e) overlay of the two
images with the reference image patch in the red channel and the transformed floating image
patch in the green channel; (f) the registered images (rigidly registered images on the top
and nonrigidly registered ones on the bottome) are stacked and rendered using volumetric
rendering. The frontal views are the virtual cross sections generated from the 3D image stacks.

is not the focus of this paper. Here we just demonstrate some image reg-

istration for visual inspection in Figure 11. In another study that is not

shown here, we noticed that after refinement, the discrepancy between the

two images are usually within ten pixels, which is very small given the

large image size. In addition, given the morphological difference between

two serial histological sections, such discrepancy is expected. In addition to

comparing the rigid and nonrigid image registration results, we also test if

the registration method can help us to achieve our goal in 3D reconstruc-

tion. As demonstrated in the newly added Figure 11f, the registered images

are stacked and rendered using volumetric rendering. The virtual cross sec-

tions are generated. It is clear that the nonrigid registration results lead to

smooth reconstruction of microscopic structures while the rigid registration

only lead to jaggy boundaries for these structures.

7.2 Characterizing the workload

A preliminary issue to mention is that the execution time for each slide within the same

working image set experiences variations due to the content and consequentially the

different number of features processed. As we described in section 3.1, the variance is

computed on a 200×200-pixel window to retain only feature points that are meaningful.

This may lead images of similar sizes to produce different workloads based on their

contents (the more homogeneous an image is, the less computation required). Table

7 summarizes the number of features extracted for each input image belonging to

the mammary data set as well as the total and computational time required for the

registration algorithm to be completed on an Opteron CPU.

The percentage of features processed ranges from 4% to 30% of total image area,

with those percentages varying slightly when using small, medium or large window

sizes (see Table 4). However we may consider them stable for each image if we select

the smaller window size as the most representative (higher search resolution). Under

this assumption, Figure 12 provides details about the percentage of features processed

20

Table 7 Workload breakdown on single CPU for mammary image set. The number of features
extracted for each input image within the mammary data set differs due to content. Execution
times in the last two columns represent the large case.

Number of features extracted Workload on CPU (in seconds)
Window size: Small Medium Large Execution time Execution time
(template,search) (342,683) (500, 1000) (683, 1366) with I/O without I/O

Mammary 1 1196 655 384 650.86 558.54 (85%)
Mammary 2 1048 568 312 497.83 414.17 (83%)
Mammary 3 3119 1528 854 1320.01 1192.69 (90%)
Mammary 4 690 322 168 463.77 340.62 (73%)

(a) Placenta image set. (b) Mammary image set.

Fig. 12 Percentage of features processed per image on each input image set. We take the
small size for the template and search window as the most representative.

for the placenta and mammary image sets: For the placenta images the minimum

percentage corresponds to image 5 with 10.48% and the maximum to image 99 with

30.38%, and a total average of 19.88%. For the mammary gland images the minimum

percentage is 4.82% by image 4, with a maximum of 20.71% by image 3, and an average

of 10.77%. According to our definition of feature, the placenta image set containts

nearly double the density of meaningful information. While the mammary gland set is

a larger image, it represents a matrix with a higher sparsity rate.

7.3 Execution times on the CPU

Figure 13 presents the execution time for the registration algorithm depicted in Figure

8 when it is entirely computed on the CPU using the FFTW library. On the left, we

show the results for the placenta image set, mammary is on the right. Within each case,

we run experiments for three different template and search windows (see Table 4): small

(blue, leftmost), medium (red, center) and large (yellow, rightmost). According to the

hints provided by the FFTW library, the small and large sizes fulfill optimal conditions,

whereas the medium size breaks all rules (from now on, this case will be referred to as

non-compliant). This has a major impact on the execution time, with an average time

for the placenta case of 294.57 seconds using the medium size versus 57.97 seconds in

the small case and 91.33 seconds in the large one. This results in an increment of 57%

when the windows are doubling size within optimal conditions and an additional 222%

when using non-compliant sizes. Mammary offers a similar behavior, though the last

two overheads are reduced to 26% and 147% respectively.

21

(a) Placenta image set (b) Mammary image set.

Fig. 13 Execution times on the CPU Opteron for the registration algorithm on a pair of
images under different image sets and window sizes. The first pair of numbers on chart leg-
ends corresponds to the small window sizes (template and search window, respectively), then
medium and finally large sizes. For placenta, average times are 57.97 seconds (small), 294.57
seconds (medium) and 91.33 seconds (large). For mammary, average times are 530.41 seconds
(small windows), 1660.91 seconds (medium) and 669.96 seconds (large).

(a) Placenta image set. (b) Mammary image set.

Fig. 14 Execution times on the GPU Quadro for the registration algorithm on a pair of
images under different image sets and window sizes. The first pair of numbers on chart leg-
ends corresponds to the small window sizes (template and search window, respectively), then
medium and finally large sizes. For placenta, average times are 19.27 seconds (small), 47.80
seconds (medium) and 22.22 seconds (large). For mammary, average times are 264.09 seconds
(small windows), 1629.72 seconds (medium) and 257.95 seconds (large).

7.4 Execution times on the GPU

Figure 14 shows execution times for the registration algorithm when the GPU helps

the CPU by computing the FFT-based cross-correlation using CUDA. The left side

represents the placenta image set and the right side the mammary image set, with

the legend differentiating the small, medium and large window size cases (see Table

4). This time, the small and large sizes fulfill all conditions imposed by the CUFFT

library and also the medium search window size of 749 pixels satisfies being a multiple

of a small prime number (7). Nevertheless, its overhead is still significant. The average

times for the placenta case are 19.27 seconds (small), 47.80 (medium) and 22.22 seconds

(large), and the slowdown is of 15% when the windows are doubling size within optimal

conditions and an additional 115% for the non-compliant case. For mammary, the large

sizes perform slightly better than the small ones, and the non-compliant overhead

(medium size) reaches the top: 531%.

22

(a) Placenta image set. (b) Mammary image set.

Fig. 15 Comparison between the GPU and CPU execution time in terms of GPU speed-
up factor. When the window sizes increase, times are more irregular in (b). The first pair of
numbers on chart legends corresponds to the small window sizes (template and search window,
respectively), then medium and finally large sizes. For placenta, the average speed-up is 3.00x
(small), 6.16x (medium) and 4.11x (large). For mammary, the average speed-up is 2.00x (small
windows), 1.01x (medium) and 2.59x (large).

Table 8 Execution times (in seconds) and speed-up factors for the different implementations
developed for computing our registration algorithm on a pair of images with maximum per-
formance. The average of all 100 and 4 runs is reported for the placenta and mammary image
sets. Boxed numbers highlight the GPU speed-up under the most typical scenarios.

Input image set: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large
(template,search) (171,342) (250,500) (342,683) (342,683) (500,1000) (683,1366)

CPU exec. time 57.97 294.57 91.33 530.41 1660.91 669.96
GPU exec. time 19.27 47.80 22.22 264.09 1629.72 257.95

GPU speed-up 3.00x 6.16x 4.11x 2.00x 1.01x 2.59x

2 GPUs time 13.13 26.05 13.66 225.17 837.51 234.62
2 GPU / 1 GPU 1.46x 1.83x 1.62x 1.17x 1.94x 1.09x

2 GPU / 1 CPU 4.41x 11.30x 6.68x 2.57x 1.98x 2.85x

7.5 CPU-GPU comparison

The central row in Table 8 reports the average speed-up factors on the GPU when

helping to compute the FFT-based cross-correlation using CUDA. Gains are unstable

for the non-compliant cases, and the most realistic results are the small and large cases

where window sizes strictly follow the guidelines provided by the FFTW and CUFFT

libraries. For the placenta image set, small windows produce a three times acceleration

factor and large windows extend gains to reach 4.11x. For the mammary image set,

those gains are more modest: 2.00x and 2.59x, respectively.

Figure 15 demonstrates that the improvement factor on the GPU depends much

more on the input image when using mammary rather than placenta, where numbers

are more consistent. Additionally, gains are more volatile when increasing the window

sizes. This is because the image contents become more heterogeneous on a larger search,

showing also higher disparities among images. This effect is corroborated in Figure 12.

23

7.6 Parallelism and scalability on the GPU

The GPU has gained popularity as an outstanding scalable architecture over the past

decade, being able to succeed in its goal of sustaining performance doublings every six

months. In addition to this intra-chip trend, other initiatives like SLI from Nvidia and

Crossfire from ATI have emerged to explore inter-chip parallelism (SMP - Symmetric

Multi-Processing). The initiative has achieved a remarkable success within the video-

game industry, but so far has not been explored for general-purpose computing to our

knowledge.

This section evaluates the performance of our registration algorithm on a pair of

GPUs when applying SMP parallelism. Our programming techniques are straightfor-

wardly extensible to higher number of graphics cards, and the methods we have used

for partitioning the problem guarantees excellent scalability beyond that point. Never-

theless, in this ambitious project we have to warn against the critical role assumed by

the input/output system: Dozens or even hundreds of GPUs working in parallel can

find an easy way of distributing different search windows efficiently when working on

large-scale input images, but there must be a high-performance file system able to read

the image tiles in parallel at a sustainable bandwidth high enough to provide data to

be processed over the Teraflop rate. During our experiments, we didn’t investigate this

bottleneck on a larger number of GPUs. Table 7 quantifies in its last two columns the

execution time (including input/output) and the computational time (excluding I/O)

to reveal that I/O is responsible of 10-20% of the total execution time. This time has

not been included in our subsequent analysis since it is the same for both the CPU and

the GPU-optimized versions of our registration algorithm, and I/O is out of the scope

of this work. This implicitly assumes that image data are available in DRAM memory

or that they can be retrieved efficiently from file using either a parallel file system or

a RAID system.

Once data reaches the CPU, there are two basic ways of distributing the work-

load among multiple GPUs in our registration algorithm: BLOCK or CYCLIC. For

the particular case of a pair of GPUs (but without losing any generality), BLOCK

assigns the upper half of an image to the first GPU and its lower half to the second

GPU. CYCLIC, on the contrary, numbers image tiles and assign even tiles to the first

GPU and odd tiles to the second GPU. Because interesting image features tend to be

spatially concentrated, BLOCK presents higher potential risk for an unbalanced data

partitioning, so we have selected CYCLIC during our experiments.

Our parallelization method works the following way: We create a thread for each

image region (tile) which computes the variance on a given CPU to assess whether it

is worth computing. If the tile passes this test, it is sent to a predetermined GPU to

compute the normalized cross-correlation and search for features. Table 9 outlines the

number of tiles processed and discarded on each GPU depending on the input image

used from the mammary data set. Workload unbalances range from 2.76% on image

2 to 13.33% on image 4, always growing for lower number of tiles to process (sparsity

rate of the input image).

Finally, Figure 16 shows that gains produced when enabling a second GPU are

very diverse, starting with 30-50% on small window sizes, continuing with 60% on

large window sizes and ending with an optimal scalability (100% gain) on medium

sizes. Those gains are proportional to the computational workload, showing that the

GPU is a more scalable processor when it can exploit its arithmetic intensity. In other

24

Table 9 Number of tiles processed and discarded for each image within the mammary image
set on each GPU under the two GPUs parallel execution. Workload unbalance and execution
time are shown in the last two columns. The search window size here is 684x684 pixels.

Input Graphics Number of tiles Workload Execution
image processor tested processed/discarded unbalance time (secs.)

Mammary 1 GPU 1 1672 196/1476 4.08% 260.41
GPU 2 1672 188/1484

Mammary 2 GPU 1 1496 158/1338 2.53% 101.32
GPU 2 1496 154/1342

Mammary 3 GPU 1 1872 428/1444 2.76% 522.43
GPU 2 1911 426/1485

Mammary 4 GPU 1 1786 78/1708 13.33% 225.37
GPU 2 1786 90/1696

(a) Placenta image set. (b) Mammary image set.

Fig. 16 GPU scalability. Improvement factor when enabling a second GPU. The first pair of
numbers on chart legends corresponds to the small window sizes (template and search window,
respectively), then medium and finally large sizes. For placenta, the average speed-up is 1.46x
(small), 1.83x (medium) and 1.62x (large). For mammary, the average speed-up is 1.17x (small
windows), 1.94x (medium) and 1.09x (large).

words, GFLOPS are not limited by data shortages coming from insufficient bandwidth

between the video memory and the GPU.

7.7 Summary and conclusions

Several conclusions can be drawn from our experimental analysis:

1. The placenta image set shows higher speed-up factors on the graphics platform.

This is because the images have a larger portion of meaningful content, leading to

a denser workload which exploits its arithmetic intensity and memory bandwidth

better. Also, a lower number of features processed means higher presence of condi-

tionals in the code, one of the most harmful instructions for GPU performance.

2. The placenta image set is more scalable on multiple GPUs, and gains are more

stable among different window sizes. The higher sparsity of the mammary images

plays a negative role in the workload distribution, introducing unbalances and

preventing parallelism from being fully exploited.

Overall, the GPU achieves a 3-4 speed-up factor in the most typical scenarios (boxed

slots in Table 8) versus the CPU, and a pair of GPUs show a satisfactory scalability

but unstable gains under different image sets and window sizes.

25

8 Related Work

Large scale image registration has many applications in both biomedical research [22,

10,32] and geophysics [33]. However, there are currently few works addressing im-

age registration algorithms intended to run efficiently on high performance computing

(HPC) environments.

The work on parallel image registration on multicomputers is limited [22] and is

restricted to either large computer clusters [34–36] or IBM cell clusters [37]. Clusters of

GPUs have been used to implement other heavy workload tasks [38], mostly within the

simulation and visualization fields. For example, numerical methods for finite element

computations used in 3D interactive simulations [39], and nuclear, gas dispersion and

heat shimmering simulations [40].

On the other hand, commodity graphics hardware has become a cost-effective par-

allel platform to implement biomedical applications in general [23]. Applications simi-

lar to ours such as the registration of small radiological images [41] and computation

of joint histogram for image registration [42], and others within the fields of data

mining [43], image segmentation and clustering [44] have applied commodity graphics

hardware solutions. Those efforts have reported performance gains of more than ten

times [24] but were mostly implemented using shaders with the Cg language [24].

The present work enhances the graphics implementation through CUDA [27] which

exploits parallelism to a wide variety of layers. Our combined implementation of CPU

and GPU on a bi-processor platform is one step ahead in performance and provides the

first parallel processing solution on large microscopic images for users without requiring

an expensive multiprocessor.

In 2004 it was reported that on real numbers, the MxM product may run slower on

the GPU due to the lack of high bandwidth access to cached data [45]. The same set

of operations that we describe for the correlation phase (two direct FFTs, point-wise

multiplication in frequency space, and a inverse FFT) took 0.625 seconds on a 2003

Intel Xeon CPU for a 1024x1024 matrix, versus 2.7 seconds on a counterpart GeForce

5 GPU [46]. We reverse this situation in 2008 for two major reasons:

1. On the software side, the CUDA programming model makes explicit the use of

shared memory, which overcomes the lack of high bandwidth access to closer data.

2. On the hardware side, we exploit the higher scalability of the GPU, doubling per-

formance every six months during the present decade versus the 18 month period

that takes the CPU that achievement [29].

GPUs for general-purpose computations are an emerging field evolving quickly

within computer architecture. Tesla [47] is the latest and more powerful contribution

from Nvidia to this area, offering multiple GPUs without video connectors into either a

board or a desk-side box to reach near supercomputer levels of single-precision floating-

point operations at a cost starting around $1500 (a price similar to the Quadro FX

5600 we have used during our experiments). At a lower price range, there have been

recent announcements on double precision graphics architectures from Nvidia (GeForce

9 Series) and ATI (FireStream - see [48]) to provide a definitive solution to software

requiring high-precision arithmetic in floating-point operations.

26

9 Conclusions

With the advances in imaging hardware, tasks like the nonrigid registration of large im-

ages with billions of pixels become increasingly popular, evolving towards computation-

ally demanding algorithms for which parallel and scalable solutions become essential.

Within this scope, the contribution of our work is twofold:

– First, we provide a parallelizable method which has been successfully applied to

biomedical studies for reconstructing the 3-D structures of biological specimens

with micron resolution. While the algorithm is motivated by biomedical applica-

tions, the principle of using high-level region features for rigid registration and

using uniform sampling for nonrigid feature matching are ubiquitous for other ap-

plications.

– Second, we have developed a computational framework to expedite the execution of

our method on graphics processors. A solid heterogeneous and cooperative multi-

processor platform is established using an AMD Opteron CPU and a pair of Nvidia

Quadro GPUs, where the best features of each processor are fully exploited for ap-

plying higher degree of parallelism at a variety of levels: Multi-task for simultaneous

executions of CPU and GPU codes, SMP (Symmetric MultiProcessing) for multi-

card GPUs using pthreads, and SIMD (Simple Instruction Multiple Data) for the

128 stream processors of the GPU using CUDA.

The CUDA programming model exploits all the capabilities of the GPU as a mas-

sively parallel co-processor to achieve a remarkable speed-up factor as opposed to an

expensive supercomputer. Experimental numbers show the success of our techniques,

first by decreasing the execution time a 2-4x factor on a single GPU and later extend-

ing those gains to a pair of GPUs. For our genetic studies of a mouse placenta sample

composed of 500 slides of 16K × 16K pixels each, it takes more than 12 hours for our

C++ code to accomplish the registration process. This was reduced to less than 2 hours

using two GPUs, and in addition, we demonstrate promising scalability for extending

those gains easily on a large number of GPUs.

Overall, our study provides an illustrative example for how a graphics architecture

in conjunction with its CUDA programming model may assist non-computer scien-

tists by adapting grand-challenge biomedical applications to provide almost real-time

response to pathologists in computer-aided methods.

10 Future Work

GPUs are highly scalable and evolve towards general-purpose architectures [28], and

we envision biomedical image processing as one of the most exciting fields to benefit

from them. The present work shows that it is possible to reduce by almost an order

of magnitude the execution time on a grand-challenge application without requiring a

multicomputer, but the final total execution time still remains around 100 minutes.

We feel that, even more remarkable than reducing the execution time with our

methods, was finding a scalable solution with great future potential. Recently, the Ohio

Supercomputing Center has acquired a visualization cluster, BALE [49], composed of

a total of 70 nodes similar to the one we used in our experiments (see Figure 10).

This encouraged us to extend our techniques to a larger number of GPUs, and with

the implementation phase already underway, we anticipate preliminary results showing

27

additional performance gain of an order of magnitude running on sixteen nodes. This

aims for a prediction of an execution time lower than 3 minutes on BALE for our

registration process over the entire set of 500 slides taken from a placenta sample,

which is much closer to our final goal of a real-time response.

In addition, in this work we have not addressed the problem of parallel image

transformation. Since GPU is designed to carry out image transformations, our second

step forward will be to develop a parallel image transformation scheme on the GPU

where different types of transformations like piecewise affine and polynomial may be

tested.

Finally, in addition to image registration and 3D reconstruction, we will also explore

the applications of GPU computing on other biomedical imaging problems, including

blind deconvolution of microscopic images, image denoising, segmentation, and com-

pression.

Acknowledgements This work was partially supported by the Ministry of Education of
Spain (TIC2003-06623, PR-2007-0014), Junta de Andalućıa of Spain (P06-TIC-02109), US
NIH grant R01 DC06458-01A1 and the startup fund from the Department of Biomedical
Informatics at the Ohio State University, US.

We thank Dr. Gustavo Leone from the Ohio State University Cancer Center for providing
us the images from mouse placenta and mouse mammary gland we used during the experiments
outlined in this paper. We also thank Dr. Dennis Sessanna and Dr. Donald Stredney from the
Ohio Supercomputing Center for providing us access to the BALE visualization cluster where
most of our execution times were obtained.

References

1. C. Levinthal and R. Ware, “Three-dimensional reconstruction from serial sections,” Na-
ture, vol. 236, pp. 207–210, 1972.

2. J. Capowski, “Computer-aided reconstruction of neuron trees from several sections,” Com-
putational Biomedical Research, vol. 10, no. 6, pp. 617–629, 1977.

3. E. Johnson and J. Capowski, “A system for the three-dimensional reconstruction of bio-
logical structures,” Computational Biomedical Research, vol. 16, no. 1, pp. 79–87, 1983.

4. D. Huijismans, W. Lamers, J. Los, and J. Strackee, “Toward computerized morphome-
tric facilities: a review of 58 software packages for computer-aided three-dimensional re-
construction, quantification, and picture generation from parallel serial sections,” The
Anatomical Record, vol. 216, no. 4, pp. 449–470, 1986.

5. V. Moss, “The computation of 3-dimensional morphology from serial sections,” European
Journal of Cell Biology, vol. 48, pp. 61–64, 1989.

6. R. Brandt, T. Rohlfing, J. Rybak, S. Krofczik, A. Maye, M. Westerhoff, H.-C. Hege,
and R. Menzel, “A three-dimensional average-shape atlas of the honeybee brain and its
applications,” The Journal of Comparative Neurology, vol. 492, no. 1, pp. 1–19, 2005.

7. J. Hajnal, H. Derek, and D. Hawkes, Medical Image Registration. CRC, 2001.
8. A. Goshtasby, 2-D and 3-D Image Registration: For Medical, Remote Sensing, and In-

dustrial Applications. Wiley-Interscience, 2005.
9. J. Streicher, D. Markus, S. Bernhard, R. Sporle, K. Schughart, and G. Muller, “Computer-

based three-dimensional visualization of developmental gene expression,” Nature Genetics,
vol. 25, pp. 147–152, 2000.

10. U. Braumann, J. Kuska, J. Einenkel, L. Horn, M. Luffler, and M. Huckel, “Three-
dimensional reconstruction and quantification of cervical carcinoma invasion fronts from
histological serial sections,” IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp.
1286–1307, 2005.

11. W. Crum, T. Hartkens, and D. Hill, “Non-rigid image registration: Theory and practice,”
The British Journal of Radiology, vol. 77, pp. S140–S153, 2004.

12. W. Hill and R. Baldock, “The constrained distance transform: Interactive atlas registration
with large deformations through constrained distance,” in Proceedings of the Workshop
on Image Registration in Deformable Environments, 2003.

28

13. T. Yoo, Insight into Images: Principles and Practice for Segmentation, Registration, and
Image Analysis. AK Peters, 2004.

14. S. Sarma, J. Kerwin, L. Puelles, M. Scott, T. Strachan, G. Feng, J. Sharpe, D. Davidson,
R. Baldock, and S. Lindsay, “3d modelling, gene expression mapping and post-mapping
image analysis in the developing human brain,” Brain Research Bulletin, vol. 66, no. 4-6,
pp. 449–453, 2005.

15. A. Jenett, J. Schindelin, and M. Heisenberg, “The virtual insect brain protocol: creating
and comparing standardized neuroanatomy,” BMC Bioinformatics, vol. 7, p. 544, 2006.

16. P. Wenzel, L. Wu, R. Sharp, A. de Bruin, J. Chong, W. Chen, G. Dureska, E. Sites, T. Pan,
A. Sharma, K. Huang, R. Ridgway, K. Mosaliganti, R. Machuraju, J. Saltz, H. Yamamoto,
J. Cross, M. Robinson, and G. Leone, “Rb is critical in a mammalian tissue stem cell
population,” Genes & Development, vol. 21, no. 1, pp. 85–97, 2007.

17. L. Cooper, K. Huang, A. Sharma, K. Mosaliganti, and T. Pan, “Registration vs. reconstruc-
tion: Building 3-d models from 2-d microscopy images,” in Proceedings of the Workshop
on Multiscale Biological Imaging, Data Mining and Informatics, 2006, pp. 57–58.

18. K. Huang, L. Cooper, A. Sharma, and T. Pan, “Fast automatic registration algorithm
for large microscopy images,” in Proceedings of the IEEENLM Life Science Systems &
Applications Workshop, 2006, pp. 1–2.

19. P. Koshevoy, T. Tasdizen, and R. Whitaker, “Implementation of
an automatic slice-to-slice registration tool,” University of Utah, SCI
Institute Technical Report UUSCI-2006-018, 2006. [Online]. Available:
http://www.sci.utah.edu/publications/SCITechReports/UUSCI-2006-018.pdf

20. J. Prescott, M. Clary, G. Wiet, T. Pan, and K. Huang, “Automatic registration of large
set of microscopic images using high-level,” in Proceedings of the IEEE International
Symposium on Medical Imaging, 2006, pp. 1284–1287.

21. R. Mosaliganti, T. Pan, R. Sharp, R. Ridgway, S. Iyengar, A. Gulacy, P. Wenzel,
A. de Bruin, R. Machiraju, , K. Huang, G. Leone, and J. Saltz, “Registration and 3d
visualization of large microscopy images,” in Proceedings of the SPIE Medical Imaging
Meeting, 2006, pp. 6144:923–934.

22. O. Schmitt, J. Modersitzki, S. Heldmann, S. Wirtz, and B. Fischer, “Image registration
of sectioned brains,” International Journal of Computer Vision, vol. 73, no. 1, pp. 5–39,
2007.

23. M. Botnen and H. Ueland, “The GPU as a computational resource in medical image
processing,” Dept. of Computer and Information Science, Norwegian Univ. of Science and
Technology, Tech. Rep., 2004.

24. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J.
Purcell, “A survey of general-purpose computation on graphics hardware,” Journal of
Computer Graphics Forum, vol. 26, pp. 21–51, 2007.

25. R. Sharp, R. Ridgway, K. Mosaliganti, P. Wenzel, T. Pan, A. de Bruin, R. Machuraju,
K. Huang, G. Leone, and J. Saltz, “Volume rendering phenotype differences in mouse
placenta microscopy data,” Computing in Science & Engineering, vol. 9, no. 1, pp. 38–47,
January/February 2007.

26. J. P. Lewis, “Fast normalized cross-correlation,” in Vision Interface. Canadian Image
Processing and Pattern Recognition Society, 1995, pp. 120–123. [Online]. Available:
citeseer.ist.psu.edu/lewis95fast.html

27. CUDA, “Home page maintained by nvidia,” http://developer.nvidia.com/object/cuda.html,
2007 (accessed December, 28th, 2007).

28. GPGPU, “A web site dedicated to the general-purpose on the GPU,”
http://www.gpgpu.org, 2007.

29. M. Fatica, D. Luebke, I. Buck, D. Owens, M. Harris, J. Stone, C. Phillips, and D. B., “Cuda
tutorial at supercomputing 2007,” November 2007 (accessed December, 28th, 2007).

30. C. library, “Home page maintained by nvidia,” http://developer.download.nvidia.com/compute/cuda/1
1/CUFFT Library 1.1.pdf, 2007 (accessed, December, 28th, 2007).

31. F. library, “Fftw home page,” http://www.fftw.org, 2007 (accessed, December, 28th, 2007).
32. L. Cooper, S. Naidu, G. Leone, J. Saltz, and K. Huang, “Registering high resolution micro-

scopic images with different histochemical stainings - a tool for mapping gene expression
with cellular structures,” in Proceedings of the Workshop on Microscopic Image Analysis
with Applications in Biomedicine, 2007.

33. T. Kim and Y.-J. Im, “Automatic satellite image registration by combination of matching
and random sample consensus,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 41, no. 5, pp. 1111–1117, 2003.

29

34. F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel algorithm for nonrigid
image registration,” Parallel Computing, vol. 31, pp. 19–43, 2005.

35. S. Warfield, F. Jolesz, and R. Kikinis, “A high performance computing approach to the
registration of medical imaging data,” Parallel Computing, vol. 24, pp. 1345–1368, 1998.

36. T. Rohlfing and C. Maurer, “Nonrigid image registration in shared-memory multiproces-
sor environments with applications to brains, breasts, and bees,” IEEE Transactions on
Information Technology in Biomedicine, vol. 7, no. 1, pp. 16–25, 1998.

37. M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu, V. Sheinin,
S. Daijavad, and B. Erickson, “Real time mutual information-based linear registration on
the cell broadband engine processor,” in Proceedings of the IEEE International Symposium
on Medical Imaging (ISBI), 2007, pp. 33–36.

38. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for high performance
computing,” in Proceedings 2004 ACM/IEEE Intl. Conference for High Performance
Computing, Networking, Storage and Analysis, Washington DC, USA, 2006, pp. 47–53.

39. W. Wu and P. Heng, “A hybrid condensed finite element model with GPU acceleration
for interactive 3d soft tissue cutting: Research articles,” Computer Animation and Virtual
Worlds, vol. 15, no. 3-4, pp. 219–227, 2004.

40. Zhao, Y., Y. Han, Z. Fan, F. Qiu, Y. Kuo, A. Kaufman, and K. Mueller, “Visual simulation
of heat shimmering and mirage,” IEEE Trans. on Visualization and Computer Graphics,
vol. 13, no. 1, pp. 179–189, 2007.

41. F. Ino, J. Gomita, Y. Kawasaki, and K. Hagihara, “A gpgpu approach for accelerating
2-d/3-d rigid registration of medical images,” in Proceedings of the 4th International Sym-
posium on Parallel and Distributed Processing and Applications (ISPA). Lecture Notes
in Computer Science 4331, Springer-Verlag, 2006, pp. 769–780.

42. P. Hastreiter, C. Rezk-Salama, C. Nimsky, C. Lurig, and G. Greiner, “Techniques for the
analysis of the brain shift in neurosurgery,” Computers & Graphics, vol. 24, no. 3, pp.
385–389, 2000.

43. S. Guha, S. Krisnan, and S. Venkatasubramanian, “Data visualization and mining using
the GPU,” in Data Visualization and Mining Using the GPU, Tutorial at 11th ACM
International Conference on Knowledge Discovery and Data Mining (KDD 2005), 2005.

44. M. Hadwiger, C. Langer, H. Scharsach, and K. Buhler, “State of the art report on GPU-
based segmentation,” VRVis Research Center, Vienna, Austria, Tech. Rep. TR-VRVIS-
2004-17, 2004.

45. K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication,” in Proceedings of the ACM SIGGRAPH
- EUROGRAPHICS Workshop on Graphics Hardware (HWWS’04), Grenoble (France),
August 2004.

46. K. Moreland and E. Angel, “The fft on a GPU,” in Proceedings of the ACM SIGGRAPH -
EUROGRAPHICS Workshop on Graphics Hardware (HWWS’03), San Diego (California,
USA), August 2004.

47. TESLA, “GPGPU high-end hardware solutions from nvidia,”
http://www.nvidia.com/object/tesla computing solutions.html, 2008 (accessed,
January, 1st).

48. FireStream, “GPU hardware solutions from amd-ati,”
http://ati.amd.com/products/streamprocessor/specs.html, 2008 (accessed, January,
1st).

49. T. B. C. at the Ohio Supercomputer Center, “http://www.osc.edu/supercomputing/hardware.”

