
Preparing seismic codes for GPUs and other

many-core architecturesmany-core architectures

Paulius Micikevicius

Developer Technology Engineer, NVIDIA

1

2010 SEG Post-convention Workshop (W-3)

High Performance Implementations of Geophysical Applications

Oct 21, 2010

Outline

• High level review of various GPUs

• Common features to all GPUs

• Requirements for maximizing GPU

performanceperformance

• Requirements as applied to

– Kirchhoff Migration

– Reverse Time Migration

2

Terminology

• We’ll define a “brick” for this talk

– Since all vendors use different names

– GPUs are built by replicating bricks (10s)

• Connected to memory via some network• Connected to memory via some network

• Brick = minimal building block that contains own:

– Control unit(s) - decodes/issues instructions

– Registers

– Pipelines for instruction execution

– Local cache(s)

3

NVIDIA GPU Brick (Streaming Multiprocessor)

• Up to 1536 threads

• Instructions are issued per 32 threads (warp)
– Think 32-way vector of threads

• Source code is for a single thread and is scalar:
– No vector intrinsics a la SSE– No vector intrinsics a la SSE

– HW handles grouping of threads into vectors, vector
control flow

• Dual-issue: instructions from different warps

• Shared memory, L1 cache

• Large register file, partitioned among threads

4

AMD GPU Brick (SIMD Engine)

• Up to ~1500 threads

• Instructions are issued per 64 threads

• VLIW instruction issue:
– HW designed for 5 “issue” slots (16x5 ‘cores’ per brick)

– Combine up to 5 instructions from the same thread to – Combine up to 5 instructions from the same thread to
maximize performance

• Source code is for a single thread and is scalar:
– HW handles grouping threads into vectors and control flow

– Compiler handles VLIW combining

• Shared memory, L1 cache

• Large register file, partitioned among threads

5

Intel Larrabee/Knights Ferry/Corner Brick

(Core)

• Up to 4 threads

• Scalar and vector (512-bit SIMD) units

– For example: 16-fp32 vector SIMD

• Dual issue: scalar-vector, from the same thread

• Source code is for a single thread and is vector:• Source code is for a single thread and is vector:

– Intrinsics for SIMD operations (a la SSE)

• L1 and L2 caches

– Intrinsics for pre-fetching and prioritization of cache lines

– No user-managed shared memory

• Small register file (relies on caches)

6

HW Commonalities

• Built by replicating 10s of “bricks”
– In-order instruction issue

• High GPU memory bandwidth (150+ GB/s)

• “Bricks” are vector processors
– Different execution paths within vectors are supported

but degrade performance
– Different execution paths within vectors are supported

but degrade performance

– Different execution paths in different vectors have no
impact on performance

• Vectors access memory in cache-lines
– Consecutive threads (vector elements) should access a

contiguous memory region

– Scattered access is supported, but will fetch multiple lines,
increasing bandwidth-pressure

7

Requirements for Maximum Performance

• Have sufficient parallelism

– At least a few 1,000 of threads per function

• Coherent memory access

– By threads in the same “thread-vector”– By threads in the same “thread-vector”

• Coherent execution

– By threads in the same “thread-vector”

8

Amount of Parallelism

• GPUs issue instructions in order
– Issue stalls when instruction arguments are not ready

• GPUs switch between threads to hide latency
– Context switch is free: thread state is partitioned (large

register file)register file)

• Conclusion: need enough threads to hide math
latency and to saturate the memory bus
– Independent instructions within a thread also help

• Very rough rule of thumb:
– Need ~512 threads per “brick”

– So, at least a few 1,000 threads per GPU

9

Memory Access

• Addresses from a warp (“thread-vector”) are
converted into line requests

– NVIDIA line sizes: 32B and 128B

– Goal is to maximally utilize the bytes in these lines– Goal is to maximally utilize the bytes in these lines

416

...

96 192128 160 224 28825632 64 352320 384
Memory addresses

0

addresses from a warp are within cache line

10

Memory Access

...

96 192128 160 224 28825632 64 352320 384 416

addresses from a warp are within cache line

0 96 192128 160 224 28825632 64 352320 384 416
Memory addresses

0

11

Memory Access

...

96 192128 160 224 28825632 64 352320 384 416

addresses from a warp are within cache line

0

...
scattered addresses from a warp

96 192128 160 224 28825632 64 352320 384 416
Memory addresses

0

96 192128 160 224 28825632 64 352320 384 416
Memory addresses

0

12

Coherent Execution

if (...)

{

in
s
tr

u
c
ti

o
n

s

{
// then-clause

}
else

{
// else-clause

}

in
s
tr

u
c
ti

o
n

s

13

Execution within warps is

coherent
in

s
tr

u
c
ti

o
n

s
 /
 t

im
e

353433 636232321 31300

in
s
tr

u
c
ti

o
n

s
 /
 t

im
e

Warp

(“vector” of threads)

Warp

(“vector” of threads)

14

Execution diverges within a warp
in

s
tr

u
c
ti

o
n

s
 /
 t

im
e

321 31300 353433 636232

in
s
tr

u
c
ti

o
n

s
 /
 t

im
e

15

Requirements for Maximum Performance

• Have sufficient parallelism

• Coherent memory access

• Coherent execution

16

Kirchhoff Migration

One (very) simplified way to look at it:

for each input trace (src-rcv pair) do

for each output point dofor each output point do

compute travel-times

get input trace value(s) based on travel times

update the output point

17

Kirchhoff Migration

• Amount of parallelism

– Plenty of output points

– For example: 1 or several points per thread

• Coherent memory access

– Successive threads should process adjacent output points

• Fastest varying dimension for thread IDs = fastest varying
dimension for data

• Coherent writes

• Reads will be scattered, but within close proximity

• Coherent execution

– Usually all threads will execute the same code path

18

Reverse Time Migration

• The main component is FD computation
– Here I assume we work in time domain

• Derivatives are computed with stencils

Stencil (8th order in space)

GPU Shared Memory is
utilized to reuse input
points among neighboring
threads

19

Reverse Time Migration

• The main component is FD computation

• Derivatives are computed with stencils

for each FD step dofor each FD step do

for each output point do

compute wave-field derivatives

combine derivatives with property-fields

update the output point

20

Reverse Time Migration

• Amount of parallelism
– Plenty of output points (100s of millions)

– For example: 1 or several points per thread

• Coherent memory access
– Successive threads in a warp should process adjacent points– Successive threads in a warp should process adjacent points

• Fastest varying dimension for thread IDs = fastest varying dimension
for data

• 2D blocks of threads -> exploit wavefield locality from SMEM

• Coherent writes and reads
– Regular grid -> regular reads as well

• Coherent execution
– All threads execute the same code path

• Execution is not data dependent

21

Summary of Coding Patterns for GPUs

• Seismic problems have plenty of parallelism
– Output points, traces/shots

– Need to make sure that the framework exposes that when
calling functions parallelizable on accelerators

• Memory accesses can be made coherent enough
– Access patterns are often coherent, or scattered in reasonably – Access patterns are often coherent, or scattered in reasonably

close proximity (for L1 or tex cache on GPU)

– Generally, make sure that thread-ID varying-order matches data
varying-order

• If arranging threads into 2D blocks, fastest varying dimension should
be accessing in multiples of cache lines

• Strive for coherent execution
– Preferably group together threads (hence data) that follows the

same path

22

Comparing GPU and CPU requirements

• Amount of parallelism

– CPUs need less currently, but requirement is growing:

• Increasing core count

• Increasing vector width

• Coherent memory access

– Already needed to maximize SSE throughput

– Scattered accesses also underutilize bus bandwidth

• Coherent execution

– Already needed within SSE vectors

23

References

• NVIDIA:
– http://www.nvidia.com/object/fermi_architecture.html

– Fermi Compute Architecture Whitepaper
(http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fe
rmi_Compute_Architecture_Whitepaper.pdf)

• AMD:
– Unleashing the Power of Parallel Compujte with Commodity ATI – Unleashing the Power of Parallel Compujte with Commodity ATI

Radeon 5800 GPU, Siggraph Asia 2009
(http://sa09.idav.ucdavis.edu/docs/SA09_AMD_IHV.pdf)

• Intel:
– L. Seiler et al. Larrabee: A Many Core X86 Architecture for Visual

Computing. Siggraph 2008 (http://software.intel.com/file/18198/)

– Tom Forsyth. The Challenge of Larrabee as GPU. Colloquium at
Stanford, 2010
(http://www.stanford.edu/class/ee380/Abstracts/100106.html)

24

References

• “Seismic Imaging” by S. Morton
– http://gpgpu.org/wp/wp-

content/uploads/2009/11/SC09_Seismic_Hess.pdf

• “Accelerating Kirchhoff Migration by CPU and GPU
Cooperation”, J. Panetta et al

– http://www.cos.ufrj.br/~monnerat/SBAC_2009.html– http://www.cos.ufrj.br/~monnerat/SBAC_2009.html

• “Implementing 3D Finite Difference Codes on the GPU” by
P. Micikevicius
– Slides:

http://www.nvidia.com/content/GTC/documents/1006_GTC09.
pdf

– video (slides+audio):
http://developer.download.nvidia.com/compute/cuda/docs/GT
C09Materials.htm then look for talk 1006

25

BACKUP

26

Current Differences among GPUs

• Hardware:

– Vector width: 16, 32, 64

– VLIW (AMD) vs dual-issue (NVIDIA, Intel)

– Dual-issue: same thread (Intel) vs different threads
(NVIDIA)(NVIDIA)

– Large register file, small cache (NVIDIA,AMD) vs small
register file, larger caches (Intel)

• Programming model

– Intel: vector source code (SIMD intrinsics)

– AMD,NVIDIA: scalar source code

– hw aggregates threads into vectors and resolves control flow
divergence

27

Simple 2D Stencil Code in CUDA
(OpenCL equivalent in comments)

__global__ void stencil_2d(float *output, float *input,

const int dimx, const int dimy, const int row_size)

{

int ix = blockIdx.x*blockDim.x + threadIdx.x; // ix = get_global_id(0);

int iy = blockIdx.y*blockDim.y + threadIdx.y; // iy = get_global_id(1);

int idx = iy * row_size + ix;

output[idx] = -4 * input[idx]

+ input[idx+1] + input[idx-1]

+ input[idx + row_size] + input[idx – row_size];

}

28

