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Terminology

 We’ll define a “brick” for this talk

— Since all vendors use different names
— GPUs are built by replicating bricks (10s)

 Connected to memory via some network

* Brick = minimal building block that contains own:
— Control unit(s) - decodes/issues instructions
— Registers
— Pipelines for instruction execution
— Local cache(s)



NVIDIA GPU Brick (Streaming Multiprocessor)

 Up to 1536 threads

* Instructions are issued per 32 threads (warp)
— Think 32-way vector of threads

* Source code is for a single thread and is scalar:
— No vector intrinsics a la SSE

— HW handles grouping of threads into vectors, vector
control flow

* Dual-issue: instructions from different warps
e Shared memory, L1 cache
* Large register file, partitioned among threads




AMD GPU Brick (SIMD Engine)

Up to ~1500 threads
Instructions are issued per 64 threads
VLIW instruction issue:

— HW designed for 5 “issue” slots (16x5 ‘cores’ per brick)

— Combine up to 5 instructions from the same thread to
maximize performance

Source code is for a single thread and is scalar:
— HW handles grouping threads into vectors and control flow
— Compiler handles VLIW combining

Shared memory, L1 cache
Large register file, partitioned among threads



Intel Larrabee/Knights Ferry/Corner Brick
(Core)

 Up to 4 threads
* Scalar and vector (512-bit SIMD) units
— For example: 16-fp32 vector SIMD
 Dual issue: scalar-vector, from the same thread

* Source code is for a single thread and is vector:
— Intrinsics for SIMD operations (a la SSE)

* L1and L2 caches
— Intrinsics for pre-fetching and prioritization of cache lines
— No user-managed shared memory

* Small register file (relies on caches)



HW Commonalities

Built by replicating 10s of “bricks”
— In-order instruction issue

High GPU memory bandwidth (150+ GB/s)

“Bricks” are vector processors

— Different execution paths within vectors are supported
but degrade performance

— Different execution paths in different vectors have no
impact on performance

Vectors access memory in cache-lines

— Consecutive threads (vector elements) should access a
contiguous memory region

— Scattered access is supported, but will fetch multiple lines,
increasing bandwidth-pressure



Requirements for Maximum Performance

* Have sufficient parallelism
— At least a few 1,000 of threads per function

 Coherent memory access

— By threads in the same “thread-vector”

e Coherent execution

— By threads in the same “thread-vector”



Amount of Parallelism

GPUs issue instructions in order
— |Issue stalls when instruction arguments are not ready

GPUs switch between threads to hide latency

— Context switch is free: thread state is partitioned (large
register file)

Conclusion: need enough threads to hide math
latency and to saturate the memory bus

— Independent instructions within a thread also help

Very rough rule of thumb:
— Need ~512 threads per “brick”
— So, at least a few 1,000 threads per GPU



Memory Access

* Addresses from a warp (“thread-vector”) are
converted into line requests

— NVIDIA line sizes: 32B and 128B
— Goal is to maximally utilize the bytes in these lines

addresses from a warp are within cache line
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Memory Access

addresses from a warp are within cache line
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Memory addresses

11



Memory Access

addresses from a warp are within cache line

32 64 96 128 160 192 224 256 288 320 352 384 416
Memory addresses

scattered addresses from a warp
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Coherent Execution

if (...)
{

// then-clause
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Execution within warps is
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Requirements for Maximum Performance

* Have sufficient parallelism
 Coherent memory access
* Coherent execution
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Kirchhoff Migration

One (very) simplified way to look at it:

for each input trace (src-rcv pair) do
for each output point do
compute travel-times
get input trace value(s) based on travel times
update the output point
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Kirchhoff Migration

 Amount of parallelism

— Plenty of output points
— For example: 1 or several points per thread

* Coherent memory access

— Successive threads should process adjacent output points

* Fastest varying dimension for thread IDs = fastest varying
dimension for data

e Coherent writes
* Reads will be scattered, but within close proximity

* Coherent execution
— Usually all threads will execute the same code path
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Reverse Time Migration

 The main component is FD computation
— Here | assume we work in time domain

e Derivatives are computed with stencils

K

~

Stencil (8t order in space)

GPU Shared Memory is
utilized to reuse input

points among neighboring
\ threads /
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Reverse Time Migration

 The main component is FD computation
e Derivatives are computed with stencils

for each FD step do
for each output point do
compute wave-field derivatives
combine derivatives with property-fields
update the output point

20



Reverse Time Migration

 Amount of parallelism
— Plenty of output points (100s of millions)
— For example: 1 or several points per thread

* Coherent memory access

— Successive threads in a warp should process adjacent points

* Fastest varying dimension for thread IDs = fastest varying dimension
for data

* 2D blocks of threads -> exploit wavefield locality from SMEM
e Coherent writes and reads

— Regular grid -> regular reads as well
e Coherent execution

— All threads execute the same code path
* Execution is not data dependent

21



Summary of Coding Patterns for GPUs

e Seismic problems have plenty of parallelism
— Output points, traces/shots

— Need to make sure that the framework exposes that when
calling functions parallelizable on accelerators

« Memory accesses can be made coherent enough

— Access patterns are often coherent, or scattered in reasonably
close proximity (for L1 or tex cache on GPU)

— Generally, make sure that thread-ID varying-order matches data
varying-order

 |If arranging threads into 2D blocks, fastest varying dimension should
be accessing in multiples of cache lines

e Strive for coherent execution

— Preferably group together threads (hence data) that follows the
same path
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Comparing GPU and CPU requirements

 Amount of parallelism
— CPUs need less currently, but requirement is growing:

* Increasing core count

* Increasing vector width

 Coherent memory access
— Already needed to maximize SSE throughput
— Scattered accesses also underutilize bus bandwidth

e Coherent execution
— Already needed within SSE vectors
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Current Differences among GPUs

 Hardware:
— Vector width: 16, 32, 64
— VLIW (AMD) vs dual-issue (NVIDIA, Intel)

— Dual-issue: same thread (Intel) vs different threads
(NVIDIA)

— Large register file, small cache (NVIDIA,AMD) vs small
register file, larger caches (Intel)

* Programming model

— Intel: vector source code (SIMD intrinsics)
— AMD,NVIDIA: scalar source code

— hw aggregates threads into vectors and resolves control flow
divergence
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Simple 2D Stencil Code in CUDA
(OpenCL equivalent in comments)

__global__ void stencil_2d( float *output, float *input,
const int dimx, const int dimy, const int row_size )

int ix = blockldx.x*blockDim.x + threadldx.x; // ix = get_global _id(0);
int iy = blockldx.y*blockDim.y + threadldx.y; // iy = get_global _id(1);

intidx =iy * row_size + ix;

output[idx] = -4 * input[idx]
+ input[idx+1] + input[idx-1]
+ input[idx + row_size] + input[idx — row_size];
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