# Into a Parallel New World

Yangdong Steve Deng (邓仰东) Tsinghua University, Beijing





### **Parallel World**



## **Parallel Brain**



## **Parallel Universe**



#### Schrodinger's cat



### **The Evolution to Parallel Processors**



# Outline





清華大学

Tsinghua University





#### 3. CUDA Propagation

#### 1. Introduction



2. Research



# **CCOE Tsinghua**

- Founded in 2009
- A cluster of 32 Tesla 1070s is under construction
  - Peak performance at 128Tflops(SP) or 16Tflops(DP)
  - Supporting Linpack applications on both CPU and GPU
  - Part of the 3<sup>nd</sup> fastest machine in China





### **Research Team**

- Prof. Wenguang Chen and Prof. Guangwen Yang
  - CS Department & High Performance Computing Center
  - High performance computing and Finance applications
- Prof. Haixiao Gao
  - Department of Biology
  - 3D protein structure recovery
- Prof. Yuxiang Xing
  - Dept. of Engineering Physics
  - CT image processing
- Prof. Yangdong Steve Deng
  - Institute of Microelectronics & Tsinghua-Intel Center of Advanced Mobile Computing
  - Electronic design automation and parallel computing
- ~60 students

# Outline









清華大学

#### 1. Introduction



2. Research



#### 3. CUDA Propagation

# **Research Outline**

#### Applications and algorithms

- Logic simulation
- Packet processing
- Digital signal processing
- Parallel microarchitecture
  - A CPU+GPU integrated packet processing engine
- GPU programming
  - Source-to-source GPU code generation



## **Logic Simulation**

#### Major method for IC design verification

- Apply input stimuli and observe output signals
- Event driven simulation is the most widely used algorithm



## **GPU Based Logic Simulation**

- Simultaneously simulate events with the same time-stamp
  - Insufficient parallelism
- Chandy-Misra-Bryant (CMB) Algorithm
  - Asynchronous and conservative



## Simulation Framework

- A dynamic GPU memory alocator
- World's fastest logic simulator on general purpose hardware
- 30X speed-up on average (100X for random patterns)
  - 1 month on CPU vs. 1 day on GPU



#### \*Published on DAC 2010 and ACM Trans. TODAES 2011



# **Research Outline**

#### Applications and algorithms

- Logic simulation
- Packet processing
- Digital signal processing
- Parallel microarchitecture
  - A CPU+GPU integrated packet processing engine
- GPU programming
  - Source-to-source GPU code generation



#### **GPU Accelerated Software Router**



### **GPU Based Software Router**

2010 and 2011



17

# **Research Outline**

#### Applications and algorithms

- Logic simulation
- Packet processing
- Digital signal processing
- Parallel microarchitecture
  - CPU+GPU integrated packet processing microarchitecture
- GPU programming
  - Source-to-source GPU code generation



# **HPEC Challenge - Radar Benchmarks**

| Benchmark | Description                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| TDFIR     | Time-domain finite impulse response filtering                                                               |
| FDFIR     | Frequency-domain finite impulse response filtering                                                          |
| СТ        | Corner turn or matrix transpose to place radar data into a contiguous row for efficient FFT                 |
| QR        | QR factorization: prevalent in target recognition algorithms                                                |
| SVD       | Singular value decomposition: produces a basis for the matrix as well as the rank for reducing interference |
| CFAR      | Constant false-alarm rate detection: find target in an<br>environment with varying background noise         |
| GA        | Graph optimization via genetic algorithm: removing<br>uncorrelated data relations                           |
| РМ        | Pattern Matching: identify stored tracks that match a target                                                |
| DB        | Database operations to store and query target tracks                                                        |









shutterstock · 50324407



## **Performance Comparison**

GPU: NVIDIA Fermi, CPU: Intel Core 2 Duo (3.33GHz), DSP AD TigherSharc 101



\*Published on Design Automation & Test Europe 2011

# Synthetic Aperture Radar (SAR) on GPU

- A complete radar application implemented on GPU
  - Imaging radar
  - ~30X speedup
  - Performance results including CPU-GPU data transfer



## **Research Outline**

#### Applications and algorithms

- Logic simulation
- Packet processing
- Digital signal processing
- Parallel microarchitecture
  - A CPU+GPU integrated packet processing engine

## GPU programming

Source-to-source GPU code generation



## **Limitation of GPU-Based Packet Processing**



## **Morphing GPU into a Network Processor**

- CPU-GPU integration
  - Shared memory space 5X performance improvement
- Latency aware scheduling
  - Reduce packet latency by 82%



\*Published on Design Automation Conference 2011

## **Research Outline**

### Applications and algorithms

- Logic simulation
- Packet processing
- Digital signal processing
- Parallel microarchitecture
  - A CPU+GPU integrated packet processing engine
- GPU programming
  - Source-to-source GPU code generation



# Source-to-Source GPU Code Generation

- **GPU** programming is challenging
  - Load balance, synchronization, hardware deta
- Source level GPU code generation
  - Applications domains: Numerical, DSP, p } embedded applications
  - Algorithm specification or legacy code Input: Algorithmic specific
  - Output: Parallel code on GPU



**Current GPU programming flow** 



for (i=1; i<4; ++i)

for (j=1; j<5; ++j) {

A[i,j] = A[i-1,j-1];

Our new GPU code generation flow

### **Automatic Parallelization**

#### Polyhedron based loop parallelization

- Loop bounds defines a domain polyhedron
  - Discrete space

Loop dependency represented by directed edges



### **Polyhedron Based Loop Parallelization**

for (i=1; i<=3; ++i) for (j=1; j<=4; ++j) { A[i,j] = A[i,j-1];

 $\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$ 



# Outline









清華大学

#### 1. Introduction



2. Research



#### 3. CUDA Propagation

### **Related Classes**

#### Prof. Yangdong Deng (Institute of Microelectronics)

- 5-day short courses
  - Offered at Tsinghua University and China Academy of Science (Supercomputing center and institute of Acoustics)
  - 400 attendees

#### Prof. Wei Xue & Yongwei Wu (CS Department)

- CUDA module in "Parallel Programming" (undergraduate) and "Parallel Programming Labs" (graduates)
- Developing "GPU based Parallel Programming"
  - Selected by 国家精品课程中心 (National Center of Excellent Courses)
  - Will be offered by major mainland China universities

## **Textbooks**

- Y. Deng and W. Liu, "Massively Data Parallel Algorithms," Tsinghua Publishing House, in press.
- Y. Deng, Y. Liu, and H. Chen, "GPU Based Parallel Computing," China Advanced Education Publisher, Textbook Series on Advanced Industry Technology Courses, in press.

# **CUDA University Programming Contest**

#### Annual contest started in 2009

- Continued in 2010
  - 1,500+ students from 200+ schools registered
  - 122 programs submitted
    - Designated topics: 22
    - Self-proposed topics: 100
      - > A wide spectrum of application domains covered
        - Scientific/engineering/consumer applications



2011 contest incoming!

