

GPU TECHNOLOGY WORKSHOP SOUTH EAST ASIA 2014

Delivering virtualized 3D graphics apps with Citrix XenDesktop & NVIDIA Grid GPUs

Garry Soriano Solution Engineer, ASEAN Citrix Systems

garry.soriano@citrix.com

1. T.

Virtualization of 3D graphics is taking off

POWERFUL AND WIDE RANGE OF BUSINESS DRIVERS

- Global workforce
- Security of intellectual property
- Time-to-market
- Work from anywhere
- Disaster recovery
- Cost efficiencies

GLOBAL PRODUCT DEVELOPMENT TEAMS - REAL EXAMPLE

GLOBAL DEVELOPMENT EFFORT - REAL EXAMPLE

30,000 CAD files or 70 GB of data to be synchronized every day

Across 26 design centers (30,000+ users)

Across 16 countries

It took 2 weekends to sync all code updates!

More challenging for 4,000+ suppliers and partners

ENHANCED IP CONTROL, COLLABORATION AND GLOBAL AGILITY

R&D

R & D Sales & Marketing

Support

Manufacturing & Logistics Supplie

Data stays in data center Access via LAN or WAN

CITRIX CUSTOMERS USING GPU ACCELERATION K≥ HANSA **Vestas** BOMBARDIER VOLVO DAIMLER Gulfstream RAMBOLL RaySearch Laboratories JOHN DEERE BRüCKNER GROUP **KNIGHTEC** MAERSK MSCAD Roger Williams University

VIRTUALIZE GRAPHICS WORKSTATIONS IN THE CLOUD

HDX 3D Pro Clients

XenApp

Windows app virtualization

Windows app and desktop virtualization

Mobilize Windows apps for maximum security, control and performance

Deliver virtual Windows desktops with the best cost, performance and security for every business need

Deliver desktops and apps with best performance using GPU acceleration

Open source platform for costeffective cloud, server, and desktop virtualization infrastructures

COMPONENTS FOR HDX 3D PRO

www.citrix.com/go/vgpu

- Shared GPU for Desktops
 - XenDesktop 7.5
 - XenServer 6.2 Service Pack 1
 - NVIDIA GRID K1 and K2 boards
 - Latest NVIDIA GRID vGPU Drivers
 - GRID & XenServer Compatible Servers

- Shared GPU for Apps
 - XenApp 6.5 or XenApp 7.5
 - Bare Metal; vSphere; XenServer
 - NVIDIA graphics cards
 - Latest NVIDIA GRID vGPU Drivers
 - XenServer Compatible Servers

COMMON QUESTIONS

- XenDesktop VDI or RDS (XenApp)?
- Which NVIDIA card?
- If XenApp, bare metal or hypervisor?
- What server hardware?
- How many VMs per host? How many users per GPU?

BEFORE YOU BEGIN... ASK QUALIFYING QUESTIONS

- 1. Understand the target users
- 2. Segment the user population
- 3. Choose between VDI and RDS workloads
- 4. Choose the appropriate graphics card
- 5. Choose the server
- 6. Understand performance requirements & considerations

UNDERSTAND AND SEGMENT THE USER POPULATION

Tier 1: Professional users
(e.g. design engineers, radiologists)
Top rendering performance
3D mouse support

Tier 2: Power usersViewing of large 3D models, basic editing

Tier 3: Knowledge workers

- · Limited use of 3D graphics today
- 2D apps, Aero effects of Windows, HD videos, PowerPoint slide transitions, etc.

USER SEGMENT DETERMINES BASIC APPROACH

2

3

Tier 1: Professional users
(e.g. design engineers, radiologists)
VDI workload for best user experience
Dedicated GPU or high-end vGPU profile

Tier 2: Power users
GPU sharing for reasonable cost per user
Choice of VDI or RDS workloads

Tier 3: Knowledge workersSoftware rasterizer or highly shared GPU

Dedicate GPU → GRID → Quadro

Shared GPU for Desktops → GRID K2

Shared GPU for Desktops → GRID K1 Shared GPU for Apps →GRID K2 →Quadro

Software Renderer (no GPU)

Tier 1: Design engineers

- Top rendering performance
- Oil and Gas, Aviation
- CAD/CAM, GIS
- Complex, mission-critical graphics

Tier 2: Power users

- Editor, Reviewer
- Compute Intensive
 Apps
- Mixed graphical and non-graphical apps

Tier 3: Knowledge workers

• Modern UI, MS Office; light 2D/3D

No rendering

Fixed Resources

Variable Resource

TIER 2 USERS: VDI OR RDS?

Both approaches support:

- GPU sharing with direct access to the graphics driver and hardware (no API intercept)
- DirectX and OpenGL graphics acceleration
- Adaptive H.264-based Deep Compression or pixel-perfect Lossless Compression
- Delivery of full virtual desktop or seamless apps to multiple monitors

Differences:

VDI - Performance & Compatibility

3D mouse support

Broadest app compatibility

CUDA and OpenCL support on bare metal but not yet supported by GRID vGPU

RDS - Lowest Cost Per User

Lowest cost (e.g. Microsoft licenses)

Apps must be RDS compatible

CUDA and OpenCL support is currently "experimental" pending field validation

RDS-COMPATIBLE PROFESSIONAL GRAPHICS APPS

Some <u>examples</u> from <u>autodeskandcitrix.com</u>, Citrix Ready site, etc. (Note: AppDNA makes it easy to check XenApp compatibility)

Lots of Autodesk apps, including:

- AutoCAD
- Inventor
- Revit
- Navisworks
- Bentley MicroStation
 - Ansys Workbench and Fluent

• ESRI ArcGIS

- Intergraph SmartPlant 3D
- Adobe Photoshop (Creative Suite)
- SAP Right Hemisphere 3D
- Siemens Solid Edge and Teamcenter

NVIDIA GRID K1

NVIDIA GRID K2

GPU	4 Kepler GPUs	2 High End Kepler GPUs		
CUDA cores	768 (192 per GPU)	3072 (1,536 per GPU)		
Memory Size	16GB DDR3 (4GB per GPU)	8GB GDDR5 (4GB per GPU)		
OpenGL	up to 4.3	up to 4.3		
DirectX	up to 11	up to 11		
GRID vGPU support	XenServer 6.2 SP1	XenServer 6.2 SP1		
User Density	up to 32 (64-96 per server)	up to 16 (32-48 per server)		

¹ Number of users depends on software solution, workload, and screen resolution

CHOOSING THE SERVER HARDWARE

ıılıılıı cısco

Cisco UCS C240 M3

Dell PowerEdge R720

Fujitsu Celsius C620 Fujitsu Celsius R930

HP ProLiant WS460c Gen8 HP ProLiant SL250s Gen8 IBM iDataPlex dx360 M4 IBM Flex System

TSUS INSPUR SUGON SUPERMICRO TYAN

Obviously, choose a server that supports your graphics card selection

Check hypervisor compatibility!

XenServer: <u>http://hcl.xensource.com/GPUPass-throughDeviceList.aspx</u>

Check eDocs for HDX 3D Pro minimum server requirements

XENDESKTOP ARCHITECTURE WINDOWS APPS AND DESKTOPS AS MOBILE SERVICES

GPU SHARING WITH XENDESKTOP

GPU SHARING WITH XENAPP

PERFORMANCE REQUIREMENTS VARY EVEN WITH THE SAME APPLICATION ...

CPU Utilization

Memory Utilization

Storage Capacity & I/O

Network

GPU Core Utilization

GPU Memory Utilization

Application Architecture

Usage Concurrency

TOOLS NEEDED

- Citrix Director + Edgesight
- Citrix HDX Monitor (CTX135817)
- GPU-Z
- Task Manager
- Perfmon
 - CPU
 - Memory
 - Disk
 - Network
- Lakeside Software SysTrack

4	1	of 1	₽	ÞI	100%	~	Find Next	4 •	٢	۵	

NVIDIA Sizing for Existing NVIDIA Card Systems

	Profile Assignments	
Best Fit Profile	System	Card
E K140Q		7
	BENWIN8PC.LAKESIDESOFTWARE.ORG	GeForce 9500 GT
	GEOFF2012.LAKESIDESOFTWARE.ORG	GeForce GTX 560
	JAIMIEW7.LAKESIDESOFTWARE.ORG	GeForce GTX 560
	MIKEK.LAKESIDESOFTWARE.ORG	GeForce GTX 560
	NANNS.LAKESIDESOFTWARE.ORG	GeForce GTX 560
	STEVED-W7.LAKESIDESOFTWARE.ORG	GeForce 9800 GT
	VIDEOED.LAKESIDESOFTWARE.ORG	GeForce 9800 GT
🗆 K260Q		1
	BENWIN8PC.LAKESIDESOFTWARE.ORG	GeForce GT 640
	BENWINBPC LAKESIDESOFTWARE ORG	GeForce GT 640
e koseoo		
		GeForce 9800 GT
		G#Exter 01X 260 28 📀

IDIA

SAMPLE APP: DASSAULT SOLIDWORKS

4-vCPU Windows 7 VM GPU Passthrough NVIDIA K1 (192 cores GPU)

- Performance Profile (Average)
- CPU Load: 18% (41% peak)
- GPU Load: 5% (25% peak)
- GPU Memory: 188 MB (net 64MB)
- Network Out: 752 Kbps (2.3 Mbps peak)
- Network In: 43 Kbps
- Disk Reads/Sec: <1</p>
- Disk Writes/Sec: 4 (21 peak)

NUMA AFFINITY IMPROVES PERFORMANCE

Avoid the overhead of going through the CPU interconnect

 Improves performance by up to 15% depending on the application and use case

Courtesy of NVIDIA Corp.

STORAGE CONSIDERATIONS

IOPS

Initial data load - MBs to GBs of data, 10s to 100s IOPS

 Steady state - 10-200 IOPS (SolidWorks, AutoDesk Inventor, AutoDesk Revit, Right Hemisphere, GoogleEarth)

Storage

Local SSD

▶ SAN or NAS

NETWORK CONSIDERATIONS - BANDWIDTH CONSUMPTION

- Bandwidth requirement is use-case specific
- Range is between average of 300 Kbps to 2 Mbps
- Case examples
 - Custom imaging application 300-500 Kbps
 - GoogleEarth ~1-1.5 Mbps
 - Siemens NX for electronics use case ~1Mbps

NETWORK CONSIDERATIONS - NETWORK LATENCY

Latency (ms)	Rating	Comments					
<= 50	Best	Suitable for most demanding use cases; for example: animation or panning complex maps					
51 to 100	Better	Suitable up to power user requirements; non- interactive and "viewing" workflows					
101 to 150	Good	Provides very usable sessions but some use cases may find it sluggish.					
151 to 300	Acceptable	Remote sites like India and China may find it acceptable.					
>301	Use-case specific	Some use cases may still find it usable such as technical reviewers or writers working from remote locations.					

LOOKING AHEAD... FRAMEHAWK INNOVATIONS

Enhancements to the HDX stack will benefit 3D graphics users on difficult network connections

- Human heuristic driven graphics display
- Image/pattern recognition
- Instantly interruptible graphics layer
- QoS signals amplifier
- Time-based heat map

Framehawk will extend HDX to support even more demanding network conditions

All tests are conducted at 250ms and mobile scenarios varying from 5% to 50% loss

RECAP

- 1. Understand the target users
- 2. Segment the user population
- 3. Choose between VDI and RDS workloads
- 4. Choose the appropriate graphics card
- 5. Choose the server
- 6. Understand the performance requirements & considerations

Getting Started with HDX 3D Pro

CITRIX

Reviewer's Guide for Remote 3D Graphics Apps

Part 3: XenServer GPU Virtualization (vGPU)

with XenDesktop 7 Apps, NVIDIA GRID K1/K2 cards, Dell R720 Server http://blogs.citrix.com/2013/09/10/newreviewers-guide-for-xendesktop-7-hdx-3d-prographics-on-both-xenserver-and-vsphere/

http://blogs.citrix.com/2013/12/24/scriptingautomating-the-testing-of-graphic-intensivegpu-workloads/

Release Notes and Admin Guide, on http://www.citrix.com/go/vGPU

Design Guide for Virtual Design Engineering

ADDITIONAL INFO ABOUT CITRIX HDX 3D PRO

