

Architectures for Scalable Media Object Search

Dennis Sng

Deputy Director & Principal Scientist

NVIDIA GPU Technology Workshop 10 July 2014

ROSE LAB OVERVIEW

Research Overview

Large
Database of
Media Objects

- Structured into multiple vertical application domains
- For machine learning & testing

Next-Generation Object Search

- Fast & rich in content
- Real-time & contextual consumer behaviour analysis

Media Cloud Platform

- Scalable media search, processing, & delivery
- Testbed for experimentation

Solution Architecture

Object Categorisation

 2D (Planar) objects: Logos, book covers, CD covers, labels, coins

• **3D rigid objects**: Cars, hardware, product packages

• **Deformable objects:** Clothes, shoes, bags, toys

 Faces: Genders, age groups, profiles, ethnicity, sentiment

Landmark & Scenery

ROSE Partner Ecosystem

Commercial Partners

Technology

NTU/PKU
Joint-Lab

Mobile Search with Contextual Mobility

Large-Scale Object Dataset & Analytics

Media Cloud Platform

Technology

Partners

Supported by

STRUCTURED OBJECT DATABASE

Framework: Object Database

Large Scale while High Quality

12/2013

05/2014

21 million raw images

17 million non-identical images

8 million clean images

Large-Scale Structured Object Database

OBJECT SEARCH

Whole Image Retrieval

Ranked Images

Visual Object Search

Query Object Database BASE

Ranked Object Detections from Cluttered Images

User Assisted Object Search Engine

Branded Bag Recognition

For people, use bag image to find bag

Face Recognition & Retrieval

Retrieving images of a person

MEDIA CLOUD PLATFORM

P3: Media Cloud Platform

- Testbed
 - Design an innovative multimedia cloud platform as a test-bed for large-scale applications
- GPUs
 - For accelerating machine learning and object search
- Media Processing Technologies
 - Develop new media processing technologies in transcoding, visual analytics and quality assessment

ROSE Lab Physical Infrastructure

IT Cloud

- P3 Cloud cluster
 - 7x Dell R720 2U server without GPU
 - 84x Intel SNB Processor @2.3GHz
 - 434GB RAM @ 1600MHz
- Network Infrastructure
 - 1x CISCO Catalyst 3750-x Layer-3 Switch, 48 port (with 1 Gbps link to NTU Campus Network)
 - 5x CISCO Catalyst 3560-x Layer-2 IP-based Switch,
 48 port

Experimental Zone

- P2 Development cluster
 - 1x HP Proliant 2U server
- Experimental GPU Platform
 - 3 x GPU Workstations: 2 x Titan Black/GTX770

HPC Cloud

- GPU Cloud Cluster
 - 1x Dell R720 2U server with 2x K20m GPU
 - 3x Dell R720 2U server with 1x K20m GPU
 - 1x Dell R720 2U server with 1x Intel Xeon Phil MIC

Big Data

- P1 Database cluster
 - 1x HP Proliant 2U server
 - 1x JBOD Storage Chasis
 - 1x D-Link NAS with 16TB storage
- Storage Cluster
 - 4x Novatte 12-Bay Storage Server
 - Up to 160TB Storage Capacity

ROSE Systems Infographic

Servers & Storage

- 23 Servers & Workstations
- 135TB Storage

CPUs

- 41 CPUs
- 244 Physical cores
- 488 Hyperthreaded Logical cores

GPUs

- Includes Tesla K20 & K40, Titan Black, GTX770, GTX645,...
- 35 GPUs
- 36,288 CUDA cores

Cloud Operational Management Tools Network Infra (OMT) Demo Svr **Cloud Master Primary** P1 Data Svr Wildright Amwore **Visualization Portal** P2 Dev Svr Nagios' 🛱 **Storage Cluster Cloud Master IT Cloud Master** Secondary P3 IT Cloud cloudstack Wilbvirt www.ware MESOS Ganglia P3 HPC Cloud #1 Nagios' (\$\text{\text{\$\pi}}\)
Core **Productive HPC Cloud Master** openstack" P3 HPC Cloud #2 **CNN** Training **Bright** Computing

Deep Learning

ACCELERATING TRAINING TIME

Machine Learning

Posted: Tuesday, June 26, 2012

of work, a

Fortunate

to rely ins

These alo

brain's) le

Insights from Googlers into our products, technology, and the Google culture

Like < 568

Using large-scale brain simulations for machine learning and A.I.

Google Brain: You proba way of training o computer vision, em chuckled 1,000 Servers at poorly ng could be far mo r research team has 16,000 CPU-cores Today's m ay we're trying to b dard machine dv been labeled a es a lot

Model: 1billion Connections

Dataset: 10million Images

Learning Time: 3 days

ing have

be able

.. the

e videos.

used only into to immore connections, but we suspected that by training much larger networks, we might achieve significantly better accuracy. So we developed a distributed computing infrastructure for training large-scale neural networks. Then, we took an artificial neural network and spread the computation across 18,000 of our CPU cores (in our data centers), and trained models with more than 1 billion connections.

By Kevin Parrish MARCH 26, 2014 2:02 PM - Source: Tom's Hardware US | 22 COMMENTS

TAGS: GTC 2014 GPUs + Nvidia +

Nvidia talks machine learning and the popular faces of humans and cats.

Nvidia's Jen-Hsun Huang talked a great <u>deal</u> about Machine Learning during his GTC 2014 keynote

present intellige present that the

"This is

kevnote

of data

you uple

future, a

enormo

smarter

NVIDIA GPUs:

3 Servers 12 GPUs 18,432 CUDA-cores NVIDIA

by data; there are torrents cell phone, from the video t you make. And in the illecting enormous, ntribute to machines be

Cost: 100x less

He goes

massive super-computers

that emulate how the brain functions. Our brains have neurons that <u>recognize</u> Ø edges; we have a neuron for every type of edge. These edges turn into features that, when combined with other features, become a face. Computer scientists call this object recognition.

Deep Learning Model (1x K20)

Date Set:

Dataset Name	#Images	#Category	Input Resolution	
ILSVRC-2012	1.2 Million	1,000	224*224	

Model Scale:

No. of Fully Connected Layers: 3

No. of Convolutional Layers: 5

No. of Connections: 60 million

- Size: 800+ MB

Recognition Accuracy

15.7% top-5 error rate

Speedup Result of Training same Model

GPUs	Batch Size	Top-1 Error		
1	(128, 128)	42.23%		
2	(256 ,256)	42.63%		
2	(256 ,128)	42.27%		
4	(512 ,512)	43.58%		
4	(512 ,128)	44.4%		
8	(1024 ,1024)	43.28%		
8	(1024 ,128)	42.86%		

Top-1 Recognition Accuracy (on par with competition winner)

Date Set: ILSVRC-2012

Training Time vs Scale of Model

Date Set: ILSVRC-2012

Deep Learning

TRAINING PLATFORM REFERENCE ARCHITECTURES

GPU-GPU Communication Latency

(1) Without GDR P2P

- GPU to GPU DMA latency:
 - 2574.33 us (2MB DMA size)

(2) With GDR P2P

- GPU to GPU DMA latency
 - 524.28 us (2MB DMA size)

(3) With QPI

- GPU to GPU via QPI
 - > 2574 us (2MB DMA size)

(4) With GDR RDMA

- GPU to GPU DMA latency
 - 600+ us (2MB DMA size)

Summary

- RDMA enables 4.9x Speed up!
- Cross-IOH DMA charges extra latency (60 70 ns)
- Cross-IOH DMA is not eligible to use GDR, latency > Without GDR P2P

PCle Layout & GPU-GPU RDMA

- Elementary
 Communication
 Models
 - Same Root Complex (eg. GPU-0 to GPU-1)
 - Same Server,
 Different Root
 Complex (eg. GPU-0 to GPU-2)
 - Different Server (eg. GPU-0 to GPU-4)

GPU Cluster with Commodity PC (for Development)

- Each node is High-end Commodity PC
- Nodes are interconnected via GbE network
- GPU communication using MPI

GPU Cluster with HPC Workstation

- Each node is High end Workstation
- Nodes are interconnected via IB network
- GPU communication using GPUDirect

GPU Cluster with HPC Server

- 4U Compute Node
- Nodes interconnected via multi-home IB network
- GPU communication using GPUDirect

Future Plans

- GPU Cluster as Deep Learning Training Platform
 - Various Inter-Connect Speed (eg. QDR vs FDR)
 - Various Inter-Connect Topology (eg. with & without redundancy)
 - Various GPU Processor (eg. K20 vs K40)
 - Various GPU Density (#GPUs per server)
- GPU-accelerated laaS
- Deep Learning Training as a Service in GPU-aware Cloud

Industry Collaboration Models

- Research Programmes (Research Collaboration Agreements)
 - Covers ≥1 Joint Research Projects
 - Assignment of organisation's research staff to work with ROSE researchers
 - Can include Industrial Post-Graduate Programme (IPP) PhD students
- Technology Evaluation/Adoption Projects (Option Agreements)
 - Focus on evaluation of ROSE technologies, leading to licensing of the technology, OR
 - Focus on usage of Structured Object Database
- Affiliate Programme (Affiliate Agreements)
 - Newsletters, Briefings & Technology Demos for subscribers

Thank You

rose.ntu.edu.sg/index.html

Specs of Some Inter-connects

	Version	Frequency	Line Code	Single- Duplex per lane Bandwidth	Full- Duplex per lane Bandwidth	Single- Duplex Max lanes Bandwidth (GB/s)	Full-Duplex Max lanes Bandwidth (GB/s)	Original Transfer Rate	Small Message Minimum Interconnec t Latency (< 64 Bytes)	Large Message Minimum Interconnect Latency @ 4194304 Bytes
QPI	NHL@2.4GHz	4.8GT/s				9.6	19.2		60 – 75 ns	
	???@2.93GHz	5.86GT/s				11.72	23.44		60 – 75 ns	
	SNB-E@3.2GHz	6.4GT/s				12.8	25.6		60 – 75 ns	
	IVB-E@3.6GHz	7.2GT/s				14.4	28.8		60 – 75 ns	
	???@4.0GHz	8GT/s				16	32		60 – 75 ns	
PCI -E	1.0	2.5GT/s	8b/10b	250MB/s	0.5GB/s	4	8	2.5GT/s		
	2.0	5GT/s	8b/10b	500MB/s	1GB/s	8	16	5.0GT/s	1.3 us	1251 us
	3.0	8GT/s	128b/130b	1GB/s	2GB/s	16	32	8.0GT/s	0.79 us	1072 us
	*4.0	16GT/s	128b/130b	2GB/s	4GB/s	32	64	16.0GT/s		
IB	QDR					5	10			
	FDR					7	14			

