

GTW 2014 – MIMOS Accelerated Library

Yaszrina Mohamad Yassin

Accelerative Technology Lab MIMOS Berhad, Malaysia

AccLib Financial Analysis With MiAccLib

Stock Pair Trading

Pair Correlation =

 $\overline{\sqrt{\sum(A_i - \overline{A})^2 \sum(B_i - \overline{B})^2}}$ Provides the user a historical view on the

 $\sum (A_i - \overline{A}) (B_i - \overline{B})$

- correlation between different pairs of shares.
- Shares with high correlation historically move in the same direction.

Multiple Portfolios with Multiple Stocks

Historical Data for Selected Stocks (Daily)

Trading Parameters (e.g):

- **Ratio versus Spread**
- Moving Average ٠
- Standard DeviatioΩ ٠
- Maximum day in trade •
- Stop Loss
- Critical Entry and Exit
- Start and End Date

Accelerated Calculation:

- Price Ratio (**PR**)/Spread (**PS**)
- **PR/PS** Moving Average
- **PR/PS** Moving standard Deviation Normal Deviation (ND) Average Spread Correlation Spread Co-integration

Compute Intense & Parallelizable Algorithms!

Buy/Sell/Hold Parallel Stocks in Different/Multiple Portfolios

Complexity of Computation for Pairwise Correlation

Pair correlation =
$$\frac{\sum (A_i - \overline{A})(B_i - \overline{B})}{\sqrt{\sum (A_i - \overline{A})^2 \sum (B_i - \overline{B})^2}}$$

$$= \frac{(A_{1} - \overline{A}) * (B_{1} - \overline{B})}{\sqrt{\sum^{2500} (A_{1} - \overline{A})^{2} * \sum^{2500} (B_{1} - \overline{B})^{2}}} + \frac{(A_{2} - \overline{A}) * (B_{2} - \overline{B})}{\sqrt{\sum^{2500} (A_{2} - \overline{A})^{2} * \sum^{2500} (B_{2} - \overline{B})^{2}}} + \frac{(A_{2500} - \overline{A}) * (B_{2500} - \overline{B})}{\sqrt{\sum^{2500} (A_{2500} - \overline{A})^{2} \sum^{2500} (B_{2500} - \overline{B})^{2}}}$$

800*(800-1)

Note: 2500 = 250 trading days * 10 years 319,600 = 800 stocks pair combination = <u>For 1 pair:</u> **Complexity = 2500²** <u>For 319,600 pairs:</u> **Complexity = 319,600 * 2500²**

Data-points = 1.99 x 10¹² 1 GPU card (2496 Cores) = 99 Minutes 1 PC (4 Cores)= 21,307 Minutes (~14.8 days)

Accuracy Test using historical data

Database Acceleration

(Galactica)

Result of Galactica vs PostgreSQL

MIMOS

*Data is taken from TPC-H benchmarking SQL Query 1

Compute amount of business that was billed, shipped and returned

____acclib

SQL Query 2

Compute the total revenue, quantity and orders from the "Building" customer

SQL Query 3

Compute the revenue, total and average amount of quantity along with the average price from transactions

** Setup Config:

СРО	Intel(R) Xeon(R) CPU X5680 @ 3.33GHz (2 processors)
RAM	22 GB
GPU	NVIDIA Tesla K40c / K20c
CUDA	5.5
Storage	WD HDD 1TB
Database	PostgreSQL 9.3
OS	Windows 7 (64 bits)

Result of *Galactica* vs *Hadoop*

Best performing on sum

- Cost saving HPC
- Failed queries operation because Galactica does not support the feature yet

Hadoop	GPU
Virtual Machines with one naster node (8 cores)	DELL Precision T5500 workstation
worker nodes (4 cores each)	NVIDIA Tesla K20c
unning on a few of	on Intel Xeon E5630@2.53
IP DL380p G8 servers	processor
nstalled with Apache Hadoop,	12GB RAM
loudera's Hadoop and npala.	1 TB Sata Hard drive (7200rpm).
ostgres on another same nodel of HP server with 8GB AM with 4 cores and another	Windows Server 2008 R2 Enterprise SP1 64-bit
AIM WITH 4 COLES AND ANOTHER	

high end HP machine with 96 GB RAM and 48 cores.

Comparison of Queries Processing Time

