@fl}iOptima

The anatomy of a GPU based
counterparty credit risk system

Patrik Tennberg, TriOptima

July 10th 2014

» A new methodology for counterparty
credit risk calculations

» System Overview
» Architecture
» CUDA made easy

@BiOptima

A new methodology
for counterparty
credit risk
calculations

gﬁiOptima

Valuation

» Discretized time and space

120 110 100 90 80
120 0.9 0.07 0.03 0 0
110 0.03
100 o0.01
90 0 0.02 O.
80 0

» Market factor dynamics described
through transition probability matrices

120 o « Matrices can be used for both:

110 e — Stepping forward in Monte-Carlo

100 e simulation for counterparty credit risk

90

" ¢ * — Backward induction to price derivatives
t: t > Calculation builds on matrix algebra
0 1

— Very fast implementation using modern
GPU technology

@ﬁiOptima

Valuation, cont.

@ﬁiOptima

 Start from a general model for the underlying
dS; = 1, dt + x(t)(O(t) — S, Jdt + o (t) S VAW, + (1) S, (dN, — A(t)dlt)

» Use probability theory to generate the transition

probability matrix at a (very) short time period
Sa

120 110 100 90 80

120 0.99 0.01 0 0 0
110 0.01 0.98 0.01 0 0
100 0 0:81+—98 0.01 0
90 0 0.02 0.01 0.98 0.01
80 0 0 0 0.01 0.99

« Multiply the transition matrix by itself to generate longer
period matrices

Advantages

« Consistency in market dynamics

— Traditional approaches using one dynamic for MC generation and another dynamic for
pricing (implied by standard pricing models)

* Realistic models for market dynamics

— Numerical approach means that you are not confined to models with analytical
solutions

— Caters for wrong-way risk

« Simple implementation of new products

— Only the pay-off profile need to be described

* Very fast calculations when designed for new hardware

— All prices for all paths is pre-calculated during the valuation step

— Enables many more MC simulations which also increase accuracy

@ﬁiOptima

@BiOptima

The method is developed by Claudio Albanese

www.albanese.co.uk

More information regarding the method can
be found here:

Coherent global market simulation and
securitization measures for counterparty
credit risk

http://www.albanese.co.uk
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf

System Overview

@iomima

triCalculate Overview

Client - - Service
: - Manager

Upload Portfolio Portfolio Available

Parse Portfolio il -

po

Start
Batch

meta data,
valuation tables,
discount factors,
default

probabilities,
Result transition kernels
. Available PV for all trades.
' . . Frates
| Simulation

simulationengine_cli valuationengine_cli

Architecture

@iomima

Architectural Goals

» Device Agnostic

» MKL and CUDA
» Portable

» Linux (Prod), OSX and Windows (Development)
» Simple and natural programming model

» Universal language of mathematics

» Application code has no knowledge about devices,
threads and other complicated stuff

> Testable
» 700+ tests, executed at every code commit
» Fast Enough!

» Simplicity over performance as long as it fast enough

@BiOptima

High Level Architecture

ComputeEngine

MKL CUDA

Financial Services Linear Algebra

API

Valuation
Models Pricers

Curves M. Factors

Trades Calibration

@BiOptima

Common
Export / Import System
Logging Math Date / Time

API

Simulation
Scenarios Evaluator

Simulation

<ANVIDIA.

CUDA
made easy

" S 51 b
PR B R 2 . v LN
A “ ' \ - -) o . - N
) % I' . <. ..» N] \.. ._}‘ l‘
A N < A .
' :_ - Y
] . g - e “ ’ ‘.”. A ~
I0ptima » - ~ .
13

ComputeEngine — Low Level API

» Device Management
» ceGetDeviceCount, ceEnumDevices, ceCreateDC
» Memory management
» DataHandle, ceAllocateData, ceFreeData
» Supported Types: Vector, Matrix, Float, Double, Integer
» Devices has their own memory manager
» Operations
» Linear Algebra: e.g. FastExp, Floor, Multiplication (MS, MV, MM)
» Financial Operations: e.g. ceAddCashFlows, ceGetDailyDiscountFactors
» Asynchronous execution

» ceAddJobToQueue

@ﬁiOptima

ComputeEngine — High Level API

typedef Matrix<float> FloatMatrix;

MatrixFactory mf (DeviceType::CUDA); // DeviceType: :MKL
FloatMatrix m = mf.CreateMatrix (3, 3, 1.0f);

m *= 0.005f;

FloatMatrix id = mf.CreateldentityMatrix (3);

m=m + id;

m.FastExp (3) ;

» A matrix factory represents a device (e.g. CUDA or MKL
(CPLU)).

» A matrix factory knows how to create data types (e.g. vectors,
matrices, etc.) on a specific device.

» All operations on data types are executed on a specific
device without memory transitions

@ﬁiOptima

Parallel Execution Model

» Calculations are partitioned into jobs

» When a job is scheduled for execution that job is
assigned a matrix factory (a device)

> Jobs are scheduled over all available matrix
factories

» As soon as a job is done it returns its matrix factory
to the scheduler

J, €— MR
MF,

i
@ﬁiOptima

Performance

> Portfolio

» 5727 trades, IR Swaps, cap-floor, swaptions
and FX forwards in several currencies

» 505 counterparties
» 81 time steps

» Valuation (2 K40)
» Generated data 15 GB
> Took 84 seconds

» Simulation (2 CPU, 12 cores each)
» 100,000 scenarios
» Took ~2 minutes 24 seconds

@BiOptima

Pros and Cons

» Pros
» Device Agnostic
» Easy and Intuitive to use — mathematical notation
» Sandbox development

» Cons
» Performance is not optimal

gﬁiOpti ma

Thank You

patrik.tennberg@trioptima.com
www.trioptima.com

. O t .
i i NEW YORK LONDON STOCKHOLM SINGAPORE TOKYO i

http://www.trioptima.com/

