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Trick #1: Privatize Arrays 

Some loops will fail to offload because parallelization is inhibited by arrays that must be privatized for 

correct parallel execution.  In an iterative loop, data which is used only during a particular iteration can 

be declared private.  And in general code regions, data which is used within the region but is not 

initialized prior to the region and is re-initialized prior to any use after the region can be declared 

private.   

For example, if the following code is compiled: 

!$acc region 

   do i = 1, M 

      do j = 1, N 

         do jj = 1, 10 

            tmp(jj) = jj  

         end do 



         A(i,j) = sum(tmp) 

      enddo  

   enddo  

!$acc end region 

Informational messages similar to the following will be produced: 

% pgfortran -ta=nvidia -Minfo=accel private.f 

privatearr: 

      4, Generating copyout(a(1:m,1:n)) 

         Generating copyout(tmp(1:10)) 

         Generating compute capability 1.0 binary 

         Generating compute capability 1.3 binary 

         Generating compute capability 2.0 binary 

      5, Parallelization would require privatization of array 'tmp(1:10)' 

      6, Parallelization would require privatization of array 'tmp(1:10)' 

         Accelerator kernel generated 

          5, !$acc do seq 

          6, !$acc do seq 

             Non-stride-1 accesses for array 'a' 

 

A CUDA kernel is generated, but it will be very inefficient because it is sequential.  If you further specify 

using a loop directive private clause that it is safe to privatize array tmp in the scope of the do j 

loop: 

 
!$acc region 

   do i = 1, M 

!$acc do private(tmp) 

      do j = 1, N 

         do jj = 1, 10 

            tmp(jj) = jj  

         end do 

         A(i,j) = sum(tmp) 

      enddo  

   enddo  

!$acc end region 

 

It will provide the PGI compiler with the information necessary to successfully compile the nested loop 

into a fully parallel CUDA kernel for execution on an NVIDIA GPU: 

 
% pgfortran -ta=nvidia -Minfo=accel -V11.9 private2.f 

privatearr: 

      4, Generating copyout(a(1:m,1:n)) 

         Generating compute capability 1.0 binary 

         Generating compute capability 1.3 binary 

         Generating compute capability 2.0 binary 

      5, Loop is parallelizable 

      7, Loop is parallelizable 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 

          7, !$acc do parallel, vector(16) ! blockidx%y threadidx%y 

             CC 1.0 : 9 registers; 56 shared, 8 constant,  

                      0 local memory bytes; 100% occupancy 

             CC 1.3 : 9 registers; 56 shared, 8 constant,  

                      0 local memory bytes; 100% occupancy 



             CC 2.0 : 19 registers; 8 shared, 64 constant,  

                      0 local memory bytes; 100% occupancy 

      8, Loop is parallelizable 

     11, Loop is parallelizable 

 

Note that the compiler will by default generate versions of the kernel that can be executed on 

CUDA devices with compute capability 1.1, 1,3 or 2.0.  You can restrict code generation to a 

specific compute capability, say 2.0 for Fermi-class GPUs, using the compiler option  

-ta=nvidia:cc20. 

Trick #2: Make While Loops Parallelizable 

The PGI Accelerator compiler can’t automatically convert while loops into a form suitable to run on the 

GPU.  But it is often possible to manually convert a while loop into a countable rectangular do loop.  For 

example, if the following code is compiled: 

!$acc region 

   i = 0 

   do, while (.not.found) 

      i = i + 1 

      if (A(i) .eq. 102) then 

         found = i  

      endif  

   enddo  

!$acc end region 

 

Informational messages similar to the following will be produced: 

 
% pgfortran -ta=nvidia:cc20 -Minfo=accel while.f -c 

PGF90-W-0155-Accelerator region ignored; see -Minfo messages  (while.f: 6) 

while: 

      6, Accelerator region ignored 

      8, Accelerator restriction: invalid loop 

  0 inform,   1 warnings,   0 severes, 0 fatal for while 

 

But if the loop is restructured into the following form as a do loop: 

 
!$acc region 

   do i = 1, N 

      if (A(i) .eq. 102) then 

         found(i) = i  

      else 

         found(i) = 0 

      endif  

   enddo  

!$acc end region 

print *, 'Found at ', maxval(found) 

It will provide the PGI compiler with the information necessary to successfully compile the nested loop 

for execution on an NVIDIA GPU:  

% pgfortran -ta=nvidia:cc20 -Minfo=accel while2.f -c 

while: 



      5, Generating copyin(a(1:n)) 

         Generating copyout(found(1:n)) 

         Generating compute capability 2.0 binary 

      6, Loop is parallelizable 

         Accelerator kernel generated 

          6, !$acc do parallel, vector(256) ! blockidx%x threadidx%x 

             Using register for 'found' 

             CC 2.0 : 8 registers; 4 shared, 60 constant,  

                      0 local memory bytes; 100% occupancy 

 

Trick #3: Rectangles Are Better Than Triangles 

All loops must be rectangular.  For triangular loops, the compiler will either serialize the inner loop or 

make the inner loop rectangular by adding an implicit if statement to skip the lower part of the triangle.  

For example, if the following triangular loop is compiled:  

!$acc region 

do i = 1, M 

   do j = i, N 

      A(i,j) = i+j  

   enddo  

enddo  

!$acc end region 

 

Informational messages similar to the following will be produced: 

 
% pgfortran -ta=nvidia:cc20 -Minfo=accel -c triangle.f 

triangle: 

      4, Generating copyout(a(1:m,:)) 

         Generating compute capability 2.0 binary 

      5, Loop is parallelizable 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(256) ! blockidx%x threadidx%x 

             CC 2.0 : 21 registers; 12 shared, 60 constant,  

                      0 local memory bytes; 83% occupancy 

      6, Loop is parallelizable 

 

While the loops seemed to have been parallelized, the resulting code will likely fail.  Why?  Because the 

compiler copies out the entire A array from device to host and in the process copies garbage values into 

the lower triangle of the host copy of A.  However, if a copy clause is specified on the accelerator 

region boundary correct code will be generated. For example, after compiling the following loop: 

 
!$acc region copy(A) 

do i = 1, M 

   do j = i, N 

      A(i,j) = i+j  

   enddo  

enddo  

!$acc end region 

Informational messages similar to the following will be produced: 

 

Here’s the triangular loop! 



pgfortran -ta=nvidia:cc20 -Minfo=accel -c triangle2.f 

triangle: 

      4, Generating copy(a(:,:)) 

         Generating compute capability 2.0 binary 

      5, Loop is parallelizable 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(256) ! blockidx%x threadidx%x 

             CC 2.0 : 21 registers; 12 shared, 60 constant,  

                      0 local memory bytes; 83% occupancy 

      6, Loop is parallelizable 

 

Trick #4: Restructure Linearized Arrays with Computed Indices 

It is not uncommon for legacy codes to use computed indices for computations on multi-dimensional 

arrays that have been linearized.  For example, if the following loop with a computed index into the 

linearized array A is compiled: 

 
!$acc region 

   do i = 1, M 

      do j = 1, N 

         idx = ((i-1)*M)+j 

         A(idx) = B(i,j) 

      enddo  

   enddo  

!$acc end region 

Informational messages similar to the following will be produced: 

% pgfortran -ta=nvidia:cc20 -Minfo=accel linearization.f 

linear: 

      4, Generating copyout(a(:)) 

         Generating copyin(b(1:m,1:n)) 

         Generating compute capability 2.0 binary 

      5, Parallelization would require privatization of array 'a(:)' 

      6, Parallelization would require privatization of array 'a(:)' 

         Accelerator kernel generated 

          5, !$acc do seq 

          6, !$acc do seq 

             Non-stride-1 accesses for array 'b' 

             CC 2.0 : 16 registers; 0 shared, 72 constant,  

                      0 local memory bytes; 16% occupancy 

The code will run on the GPU but it will execute sequentially and run very slowly.  You have two 

options.  First, the loop can be restructured to remove linearization: 

!$acc region 

   do i = 1, M 

      do j = 1, N 

         A(i,j) = B(i,j) 

      enddo  

   enddo  

!$acc end region 

Allowing the compiler to successfully generate a parallel GPU code: 



% pgfortran -ta=nvidia:cc20 -Minfo=accel linearization2.f 

linear: 

      4, Generating copyout(a(1:m,1:n)) 

         Generating copyin(b(1:m,1:n)) 

         Generating compute capability 2.0 binary 

      5, Loop is parallelizable 

      6, Loop is parallelizable 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 

          6, !$acc do parallel, vector(16) ! blockidx%y threadidx%y 

             CC 2.0 : 11 registers; 16 shared, 64 constant,  

                      0 local memory bytes; 100% occupancy 

 

Or second, independent clauses can be specified on the do loops to provide the compiler with the 

information necessary to safely parallelize the loops: 

!$acc region 

!$acc do independent 

   do i = 1, M 

!$acc do independent 

      do j = 1, N 

         idx = ((i-1)*M)+j 

         A(idx) = B(i,j) 

      enddo  

   enddo  

!$acc end region 

 

Trick #5: Privatize Live-out Scalars 

It is common for loops to initialize scalar work variables, and for those variables to be referenced or re-

used after the loop.  Such a variable is called a “live out” scalar, because correct execution may depend 

on its having the last value it was assigned in a serial execution of the loop(s).  For example, if the 

following loop with a live out variable idx is compiled: 

!$acc region 

      do i = 1, M 

         do j = 1, N 

            idx = i+j 

            A(i,j) = idx 

         enddo 

      enddo 

!$acc end region 

      print *, idx, A(1,1), A(M,N) 

Informational messages similar to the following will be produced: 

% pgfortran liveout.f -ta=nvidia:cc13 -Minfo=accel -c 

liveout: 

      4, Generating copyout(a(1:m,1:n)) 

         Generating compute capability 1.3 binary 

      5, Loop is parallelizable 

      6, Inner sequential loop scheduled on accelerator 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(256) ! blockidx%x threadidx%x 



          6, !$acc do seq 

             CC 1.3 : 9 registers; 48 shared, 16 constant,  

                      0 local memory bytes; 100% occupancy 

      7, Accelerator restriction: induction variable live-out from loop: idx 

      8, Accelerator restriction: induction variable live-out from loop: idx 

 

While some code will run on the GPU, the inner loop is executed sequentially.  Looking at the code, the 

use of idx in the print statement is only for debugging purposes.  In this case, you know the 

computations will still be valid even if idx is privatized so the code can be modified as follows: 

!$acc region 

      do i = 1, M 

!$acc do private(idx) 

         do j = 1, N 

            idx = i+j 

            A(i,j) = idx 

         enddo 

      enddo 

!$acc end region 

      print *, idx, A(1,1), A(M,N) 

 

A much more efficient fully parallel kernel will be generated: 

 
% pgfortran liveout2.f -ta=nvidia:cc13 -Minfo=accel -c 

liveout: 

      4, Generating copyout(a(1:m,1:n)) 

         Generating compute capability 1.3 binary 

      5, Loop is parallelizable 

      7, Loop is parallelizable 

         Accelerator kernel generated 

          5, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 

          7, !$acc do parallel, vector(16) ! blockidx%y threadidx%y 

             CC 1.3 : 8 registers; 56 shared, 12 constant,  

                      0 local memory bytes; 100% occupancy 

 

Note that the value printed out for idx in the print statement will be different than in a sequential 

execution of the program. 

 

Trick #6: Inline Function Calls in Directives Regions 

One of the most common barriers to maximum GPU performance is the presence of function calls in the 

region.  To run efficiently on the GPU, the compiler must be able to inline function calls. There are two 

ways to invoke automatic function inlining with the PGI Accelerator compilers: 

1. If the function(s) to be inlined are in the same file as the section of code containing the accelerator 

region, you can use the -Minline compiler command-line option to enable automatic procedure 

inlining.  This will enable automatic inlining of functions throughout the file, not only within the 

accelerator region. If you would like to restrict inlining to specific functions, say func1 and func2, use the 

option -Minline=func1,func2.  To learn more about controlling inlining with -Minline, see the 



pgfortran man page, or just type pgfortran -help -Minline in a shell window with the 

environment initialized for use of the PGI Accelerator compilers. 

2. If the function(s) to be inlined are in a separate file from the code containing the accelerator region, 

you need to use the inter-procedural optimizer with automatic inlining enabled by specifying  

-Mipa=inline on the compiler command-line.  -Mipa is both a compile-time and link-time option, 

so you need to specify it on the command-line when linking your program as well for inlining to occur.  

As with -Minline, you can learn more about controlling inter-procedural optimizations and inlining 

from the pgfortran man pages, or using pgfortran -help -Mipa. 

In some cases when working with Fortran, procedures can only be inlined automatically by enabling 

array reshaping with -Minline,reshape or -Mipa=inline,reshape. For example when a 2D 

array is passed as an actual argument to a corresponding 1D array dummy argument. 

There are several restrictions on automatic inlining.  A Fortran subprogram will not be inlined if any of 

the following applies: 

• It is referenced in a statement function. 

• A common block mismatch exists; in other words, the caller must contain all common blocks 

specified in the callee, and elements of the common blocks must agree in name, order, and type 

(except that the caller's common block can have additional members appended to the end of 

the common block). 

• An argument mismatch exists; in other words, the number and type (size) of actual and formal 

parameters must be equal. 

• A name clash exists, such as a call to subroutine xyz in the extracted subprogram and a 

variable named xyz in the caller. 

If you encounter these or any other restrictions that prevent automatic inlining of functions 

called in accelerator regions, the only alternative is to inline them manually. 

Trick #7: Watch for Runtime Device Errors  

Once you have successfully offloaded code in an accelerator region for execution on the GPU, you can 

still encounter errors at runtime due to common porting or coding errors that are not exposed by 

execution on the host CPU.   

If you encounter the following error message when executing a program: 

 
Call to cuMemcpyDtoH returned error 700: Launch failed 

 

This typically occurs when the device kernel returns an execution error due to an out-of-bounds or 

other memory access violation.  For example the following code will generate such an error: 

!$acc region 

      do i = 1, M 

         do j = 1, N 

            A(i,j) = B(i,j+1) << out-of-bounds 



         enddo 

      enddo 

!$acc end region 

The only way to isolate such errors currently is through inspection of the code in the accelerator region, 

or by compiling and executing on the host using the -Mbounds command-line option. This option will 

instrument the executable to print an error message for out-of-bounds array accesses.  

If you encounter the following error message when executing a program: 

Call to cuMemcpy2D returned error 1: Invalid value 

This typically occurs if there is an error copying data to or from the device.  For example, the following 

code will generate such an error: 

      parameter(N=1024,M=512) 

      real :: A(M,N), B(M,N) 

      ... 

!$acc region copyout(A), copyin(B(0:N,1:M+1))  <<< Bad bounds 

      do i = 1, M                                  for copyin 

         do j = 1, N 

            A(i,j) = B(i,j+1) 

         enddo 

      enddo 

!$acc end region 

The only way to isolate such errors currently is through inspection of the code in the accelerator region 

or inspection of the -Minfo informational messages at compile time. 

Trick #8: Be Aware of Data Movement 

Having successfully offloaded a CUDA kernel using PGI Accelerator directives, you should understand 

and try to optimize data movement between host memory and GPU device memory.   

You can see exactly what data movement is occurring for each generated CUDA kernel by looking at the 

informational messages emitted by the PGI Accelerator compiler: 

% pgfortran -ta=nvidia:cc20 -Minfo=accel -c jacobi.f90 

jacobi: 

     18, Generating copyin(a(1:m,1:n)) 

         Generating copyout(a(2:m-1,2:n-1)) 

         Generating copyout(newa(2:m-1,2:n-1)) 

         ...  

You can see how much execution time is spent moving data between host memory and device memory 

by linking your executable with the time sub-option added to  -ta=nvidia command-line option: 

% pgfortran -ta=nvidia:time jacobi.f90 

% a.out 

  

<output from program> 

  

Accelerator Kernel Timing data 

  jacobi 

Array a being copied from host memory to GPU 

device memory before CUDA kernel launch  

Elements of arrays a and newa copied back to 

host memory after CUDA kernel execution  



    18: region entered 798 times 

        time(us): total=5575112 init=4565273 region=1009839 

                  kernels=79825 data=385751 

        w/o init: total=1009839 max=12347 min=1191 avg=1265 

        20: kernel launched 798 times 

            grid: [16x16]  block: [16x16] 

            time(us): total=47315 max=70 min=58 avg=59 

        24: kernel launched 798 times 

            grid: [1]  block: [256] 

            time(us): total=9067 max=13 min=11 avg=11 

        27: kernel launched 798 times 

            grid: [16x16]  block: [16x16] 

            time(us): total=23443 max=35 min=28 avg=29 

Once you have examined and timed the data movement required at accelerator region boundaries, 

there are several techniques you can use to minimize and optimize data movement. 

Trick #9: Use Directive Clauses to Optimize Performance 

By default, the PGI Accelerator compilers will move the minimum amount of data required to perform 

the necessary computations on the GPU.  For example, if the following code is compiled: 

      change = tolerance + 1 ! get into the while loop 

      iters = 0 

      do while ( change > tolerance ) 

         iters = iters + 1 

         change = 0 

!$acc region 

         do j = 2, n-1 

            do i = 2, m-1 

               newa(i,j) = w0 * a(i,j) + & 

               w1 * (a(i-1,j) + a(i,j-1) + a(i+1,j) + a(i,j+1) ) + & 

               w2 * (a(i-1,j-1) + a(i-1,j+1) + a(i+1,j-1) + a(i+1,j+1) ) 

               change = max( change, abs( newa(i,j) - a(i,j) ) ) 

            enddo 

         enddo 

         a(2:m-1,2:n-1) = newa(2:m-1,2:n-1) 

!$acc end region 

      enddo 

Feedback messages similar to the following will be produced: 

% pgfortran -ta=nvidia:cc20 -Minfo=accel -c jacobi.f90 

jacobi: 

     18, Generating copyin(a(1:m,1:n)) 

         Generating copyout(a(2:m-1,2:n-1)) 

         Generating copyout(newa(2:m-1,2:n-1)) 

         Generating compute capability 2.0 binary 

     19, Loop is parallelizable 

     20, Loop is parallelizable 

         Accelerator kernel generated 

         19, !$acc do parallel, vector(16) ! blockidx%y threadidx%y 

         20, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 

             Cached references to size [18x18] block of 'a' 

             CC 2.0 : 18 registers; 1328 shared, 104 constant,  

                      0 local memory bytes; 100% occupancy 

385,751 microseconds spent on moving data 

between host memory and GPU device 

79,825 microseconds spent executing kernels  



         24, Max reduction generated for change 

     27, Loop is parallelizable 

         Accelerator kernel generated 

         27, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 

             !$acc do parallel, vector(16) ! blockidx%y threadidx%y 

             CC 2.0 : 10 registers; 16 shared, 80 constant,  

                      0 local memory bytes; 100% occupancy 

 

Some things to note: 

• Only the interior elements of the arrays a and newa are modified, so only those elements are 

copied out of the GPU memory to host memory 

• Performance degrades dramatically because data being copied is not contiguous and is using 

small transfers 

• Array newa is just a temporary array which does not need to be initialized before kernel 

execution and is not used after kernel execution.   

If we modify the code as follows by adding clauses to the acc region directive to specify that the 

entire array a should be copied in and out, and that the array newa can be treated as GPU-local (i.e. as 

a scratch array that does not need to be copied): 

      change = tolerance + 1 ! get into the while loop 

      iters = 0 

      do while ( change > tolerance ) 

         iters = iters + 1 

         change = 0 

!$acc region copy(a) local(newa) 

         do j = 2, n-1 

            do i = 2, m-1 

               newa(i,j) = w0 * a(i,j) + & 

               w1 * (a(i-1,j) + a(i,j-1) + a(i+1,j) + a(i,j+1) ) + & 

               w2 * (a(i-1,j-1) + a(i-1,j+1) + a(i+1,j-1) + a(i+1,j+1) ) 

               change = max( change, abs( newa(i,j) - a(i,j) ) ) 

            enddo 

         enddo 

         a(2:m-1,2:n-1) = newa(2:m-1,2:n-1) 

!$acc end region 

      enddo 

 

When re-compiled the PGI compiler emits the following feedback messages: 

 
% pgfortran -ta=nvidia:cc20 -Minfo=accel -c jacobi2.f90 

jacobi: 

     18, Generating copy(a(:,:)) 

         Generating local(newa(:,:)) 

         Generating compute capability 2.0 binary 

     ... 

 

The copy of array a will be much more efficient, and data movement for array newa has been 

completely eliminated. 



Trick #10: Use Data Regions to Avoid Inefficiencies 

The PGI Accelerator programming model has two kinds of regions: a compute region and a data region. 

In a compute region, loops to be executed on the GPU are delineated using the !$acc region and 

!$acc end region directives. For example, we might enclose a weighted five-point stencil 

operation in Fortran as: 

!$acc region 

    do i = 2, n-1 

      do j = 2, m-1 

        b(i,j) = 0.25*w(i)*(a(i-1,j)+a(i,j-1)+ & 

                            a(i+1,j)+a(i,j+1)) & 

                +(1.0-w(i))*a(i,j) 

      enddo 

    enddo 

!$acc end region 

 

When compiled, the PGI Accelerator compiler emits the following messages: 

s1: 

      7, Generating copyin(w(2:n-1)) 

         Generating copyin(a(1:n,1:m)) 

         Generating copyout(b(2:n-1,2:m-1)) 

      8, Loop is parallelizable 

      9, Loop is parallelizable 

         Accelerator kernel generated 

          8, !$acc do parallel, vector(16) 

             Cached references to size [16] block of 'w' 

          9, !$acc do parallel, vector(16) 

             Cached references to size [18x18] block of 'a' 

However, there is a serious problem with this particular program. The loop does roughly 8*n*m 

operations, but transfers roughly 8*n*m bytes to do it. The data transfer between the host and the 

GPU will dominate any performance advantage gained from the parallelism on the GPU. We certainly 

don't want to send data between the host and GPU for each iteration. Enter the data region.  

A data region looks similar to a compute region, but defines only data movement between host memory 

and GPU device memory. In an iterative solver, a data region can be placed outside the iteration loop, 

and an enclosed compute region around the computational kernel.  A more complete example might 

look as follows:  

!$acc data region copy(a(1:n,1:m)) local(b(2:n-1,2:m-1)) copyin(w(2:n-1)) 

      do while(...) 

!$acc region 

         do i = 2, n-1 

            do j = 2, m-1 

               b(i,j) = 0.25*w(i)*(a(i-1,j)+a(i,j-1)+ & 

                                   a(i+1,j)+a(i,j+1)) & 

                      +(1.0-w(i))*a(i,j) 

            enddo 

         enddo 

         do i = 2, n-1 

            do j = 2, m-1 

Compiler is sending a portion of array w and 

array a to the GPU, and copying modified 

portion of array b back to host memory  

Shows parallelism schedule: 

Loops are executed in 16x16 

blocks.  



               a(i,j) = b(i,j) 

            enddo 

        enddo 

!$acc end region 

     enddo  

!$acc end data region 

 

Now, any input data is copied to GPU device memory at entry to the data region, and the results copied 

back to host memory at exit of the data region. Inside the while loop, there is essentially no data 

movement between the host and the GPU. This will run several times faster than the original program.  

A data region will typically contain one or more compute regions; data used in a compute region that 

was moved to the accelerator in an enclosing data region directive are not moved at the boundaries of 

the compute region.  

The updatein and updateout clauses allow fine-tuning of data movement at region boundaries.  

You can add an updatein clause to a compute region directive for data that was allocated on the GPU 

in an enclosing data region, but which has been updated on the host between the beginning of the data 

region and the beginning of the compute region. This tells the compiler the arrays or parts of arrays that 

need to be copied from host memory to GPU device memory at entry to the compute region. Similarly, 

you would add an updateout clause to a compute region when you have data allocated on the GPU in 

an enclosing data region, but you want some or all of the host copy of that array updated at the exit of 

the compute region.  

Using data regions, it is often possible to substantially reduce the amount of data movement in program 

units that include multiple accelerator compute regions. 

Trick #11: Leave Data on GPU Across Procedure Boundaries 

Mirror Directive and Clause 

Data regions enable the programmer to leave data in GPU device memory and re-use it across multiple 

procedures.  For this feature, two additional directives are provided. 

The PGI Accelerator Fortran mirror directive applies to Fortran allocatable arrays. This directive 

informs the compiler that allocate and deallocate statements for this array should allocate copies both 

in host memory and in the GPU device memory. When mirrored arrays appear in host code, the host 

copy is used; when they appear in PGI Accelerator compute regions, the GPU copy is used. Using the 

mirror directive with module allocatable arrays gives them global visibility.  For example: 

      module glob 

      real, dimension(:), allocatable :: x 

!$acc mirror( x ) 

      end glob 

 

      subroutine sub( y ) 

      use glob 

      real, dimension(:) :: y 

!$acc region 



      do i = 1, ubound(y,1) 

         y(i) = y(i) + x(i) 

      enddo 

!$acc end region 

      end subroutine 

 

In this example, when array x is allocated, a copy on the GPU will be allocated as well. When the 

accelerator region in subroutine sub is executed, the region will use the values in the GPU copy of x with 

no data movement at the accelerator region boundary. 

The update directive can be used to synchronize data between the GPU and host copies of the array. 

The following example updates a sub-array of the host copy of x from GPU data: 

     subroutine sync 

     use glob 

!$acc update host( x(2:499) ) 

     end subroutine 

In addition to the mirror directive, there is a mirror clause for use in data regions; the mirror 

clause is like the mirror directive, except the GPU copy only has the lifetime of the data region on 

which the mirror clause occurs.  Here are some things to note: 

• When the data region is entered, if an array in a mirror clause is allocated on the host (or is 

not allocatable), it will be allocated on the GPU with the same size.  

• If an allocatable array in a mirror clause is not allocated, a GPU copy will not be allocated.  

• If an allocatable array in a mirror clause is allocated or deallocated in the data region, the GPU 

copy will likewise be allocated or deallocated. It's important to note that the allocation or 

deallocation does not imply any data movement.  

• If the host data needs to be copied to the GPU at the region boundary for correct execution, 

either a copyin clause should be used instead of mirror or explicit update directives must 

be added as well.  

Mirror directives and Fortran modules enable use of global device-resident data across procedure 

boundaries, but what if you need to pass a variable with a device-resident copy to a function or 

subroutine?   

Reflected Directive  

Procedure arguments with device-resident copies must be passed using the PGI Accelerator Fortran 

reflected directive, which applies to dummy arguments. This directive informs the compiler that the 

specified array dummy arguments appear in a data region clause in the caller, or are mirrored on the 

GPU. Consider the previous example expanded as follows: 

      module glob 

      real, dimension(:), allocatable :: x 

!$acc mirror( x ) 

      contains 

         subroutine sub( y ) 



         real, dimension(:) :: y 

!$acc reflected(y) 

!$acc region 

         do i = 1, ubound(y,1) 

            y(i) = y(i) + x(i) 

         enddo 

!$acc end region 

         end subroutine 

      end module 

 

      subroutine roo( z ) 

      use glob 

      real :: z(:) 

!$acc data region copy(z) 

      call sub( z ) 

!$acc end data region 

      end subroutine 

 

The subroutine sub is contained within a module, and the dummy array y has the reflected attribute. 

The caller roo uses the module, making the interface to sub explicit; alternatively, sub can be an external 

subroutine but in that case it must have an interface block in roo. At the call site, the compiler knows 

that the host array z has a copy in GPU device memory, and that the subroutine sub needs both the 

host address and the GPU address for z. Within the subroutine sub, the compiler knows, because of the 

reflected directive, that the dummy argument y must have been copied to the GPU by the caller, 

and so the compute region in the subroutine incurs no data movement for either y (because it's 

reflected) or x (because it's mirrored).  

The reflected directive only applies to dummy argument arrays, and can only be used when the 

procedure interface is explicit, in Fortran terms. This means the subprogram must appear in a module, 

and the caller in the same module, or in a scope where the module has been USEd, or the caller must 

have a matching interface block to the subprogram with the reflected directive. Another restriction in 

the current implementation is the whole array must be copied to the GPU to use the reflected 

directive.  

Using data regions along with the mirror and reflected directives, it is possible to allocate and use 

data in GPU device memory across large portions of an application while minimizing the number of data 

transfers that must occur to keep the host and device copies coherent.  


