

NVIDIA Resources for Application Developers

DEVELOPMENT TOOLS

CUDA Toolkit

Complete GPU computing development kit

cuda-gdb

GPU hardware debugging

Visual Profiler

GPU hardware profiler for CUDA C and OpenCL

Parallel Nsight

Integrated development environment for Visual Studio

NVPerfKit

OpenGL|D3D performance tools

FX Composer

Shader Authoring IDE

SDKs AND CODE SAMPLES

GPU Computing SDK

CUDA C, OpenCL, DirectCompute code samples and documentation

Graphics SDK

DirectX & OpenGL code samples

PhysX SDK

Complete game physics solution

OpenAutomate

SDK for test automation

VIDEO LIBRARIES

Video Decode Acceleration

NVCUVID / NVCUVENC DXVA Win7 MFT

Video Encode Acceleration

NVCUVENC Win7 MFT

Post Processing

Noise reduction / De-interlace/ Polyphase scaling / Color process

ENGINES & LIBRARIES

Math Libraries

CUFFT, CUBLAS, CUSPARSE, CURAND, ...

NPP Image Libraries

Performance primitives for imaging

App Acceleration Engines

Optimized software modules for GPU acceleration

Shader Library

Shader and post processing

Optimization Guides

Best Practices for GPU computing and Graphics development

PRESENTED BY

Licensed solutions from mental images

Integrated Renderers

mental ray

the world's most widely adopted professional ray tracing solution

iray

The world's first commercially available, physically correct rendering with GPU acceleration

More...

Numerous renderers to fill particular needs.

Material Workflows

metaSL

Shading language extending from mental ray to real-time shader APIs

mental mill

Visual shader editor for end users to create and edit MetaSL shaders

Application Building

RealityServer

A 3D web services development platform supporting collaboration and a wealth of rendering options

neuray

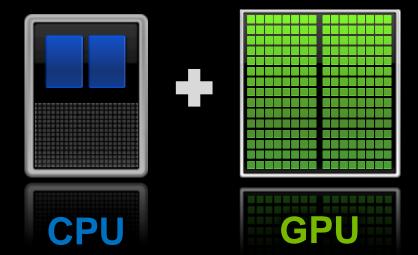
Application foundation for building 3D applications with native couplings to mental images rendering solutions

mental matter

Higher order surface definition & approximation

Distributed Processing

DiCE


Highly scalable distributed processing solution for neuray applications

"GPGPU or GPU Computing"

 Using all processors in the system for the things they are best at doing:

- Evolution of CPUs makes them good at sequential, **serial** tasks
- Evolution of GPUs makes them good at parallel processing

CUDA - NVIDIA's Architecture for GPU Computing

GPU Computing Applications

CUDA C/C++

- +100k developers
- In production usage since 2008
- SDK + Libs + Visual Profiler and Debugger

OpenCL

- Commercial OpenCL Conformant Driver
- Publicly Available for all CUDA capable GPU's
- SDK + Visual Profiler

Direct Compute

- Microsoft API for GPU Computing
- Supports all CUDA-Architecture GPUs (DX10 and DX11)

Fortran

- PGI Accelerator
- PGI CUDA Fortran

Python, Java, .NET, more...

- PyCUDA
- GPU.NET

- Cross Platform:Linux, Windows, MacOS
- Uses span

 HPC to Consumer

NVIDIA GPU

with the CUDA Parallel Computing Architecture

Broad Adoption

- **+250M** CUDA-enabled GPUs in use
- +650k CUDA Toolkit downloads in last 2 Yrs
- +350 Universities teaching GPU Computing on the CUDA Architecture

Accelerating Existing Applications

Identify Possibilities

Port Relevant Portion

Validate Gains

Optimize

Deploy

Profile for Bottlenecks, Inspect for Parallelism

A Debugger is a good starting point, Consider Libraries & Engines vs. Custom Code

Benchmark vs. CPU version

Parallel Nsight, Visual Profiler, GDB, Tau CUDA, etc.

Maintain original as CPU fallback if desired.

Production Example

GPU Computing Software Stack

Your GPU Computing Application

Application Acceleration Engines
Middleware, Modules & Plug-ins

Foundation Libraries
Low-level Functional Libraries

Development Environment Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

CUDA Architecture

NVIDIA Application Acceleration Engines (AXE)

A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs.

- Free to acquire, license and deploy
- Valuable features and superior performance are quick to add
- App's can evolve quickly, as API's abstract GPU advancements

Application Acceleration Engines

PhysX physics & dynamics engine

breathing life into real-time 3D; Apex enabling 3D animators

Cg/CgFX programmable shading engine

enhancing realism across platforms and hardware

SceniX* scene management engine

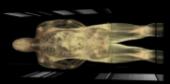
the basis of a real-time 3D system

CompleX scene scaling engine

giving a broader/faster view on massive data

OptiX ray tracing engine

making ray tracing ultra fast to execute and develop



Accelerating Application Development

App Example: Auto Styling

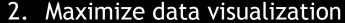
- 1. Establish the Scene
 - = SceniX

2. Maximize interactive

quality

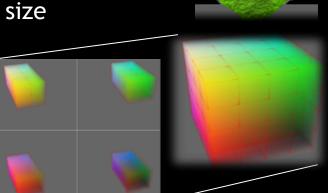
+ CgFX + OptiX

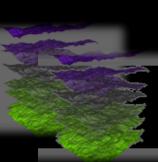
3. Maximize production


quality

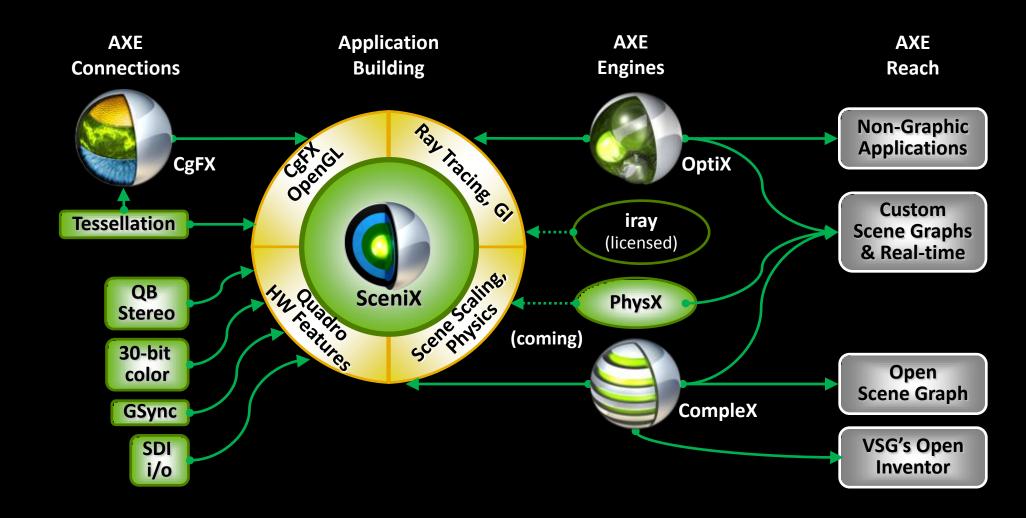
+ iray(licensed)

App Example: Seismic Interpretation


- 1. Establish the Scene
 - = SceniX



- + quad buffered stereo
- + volume rendering
- + ambient occlusion

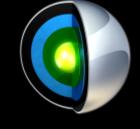

+ CompleX

Acceleration Engine Relationships 2010

SceniX™ Scene Management Engine

The fastest start for building a real-time 3D app - wherever there's a need to analyze 3D data, make decisions, and convey results in real-time

- Highly efficient scene graph for rapidly building real-time
 3D app's for any OpenGL GPU on Windows/Linux
- Integration interface for using GUI frameworks (Qt, wxWidgets, etc.)
- Fast on-ramp to GPU capabilities & NVIDIA engines
 - Quad Buffered Stereo, SDI i/o,30-bit color, etc.
 - CgFX, CompleX, OptiX, Tessellation
- Source Code license available (upon approval)
- Differentiator Multiple Render Targets


Showcase images courtesy Autodesk

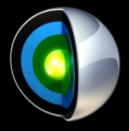
SceniX - Example Companies/Products v6 in July

+5k downloads/version

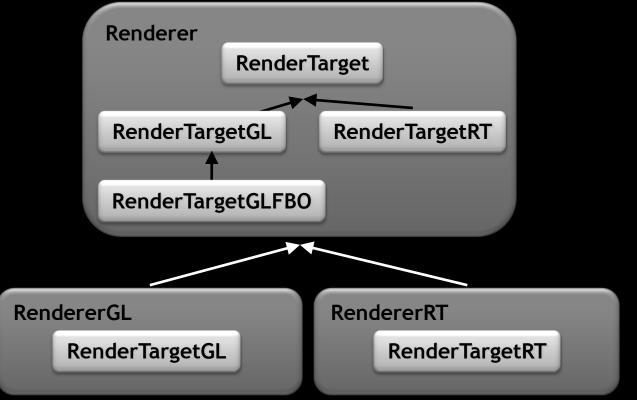
DeltaGen

Autodesk® Showcase

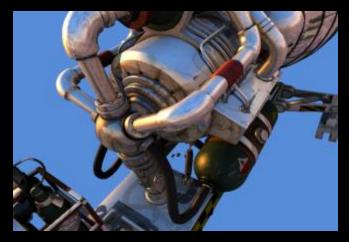
SceniX and CgFX example

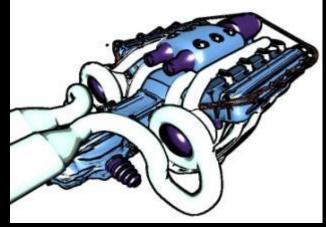

Quadro 6000 Demo Viewer

SceniX - Renderer Independency

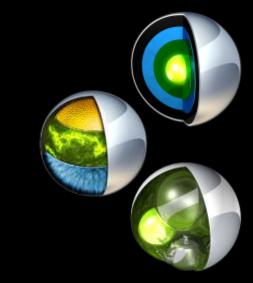

- Separates rendering from destination (tiles, cameras, viewports, renderers, image gen, etc.)
- Multiple render engines within a single render window
- Together enabling:
 - Stack Rendering (multiple techniques and renderers)
 - Hybrid Rending (raster + ray tracing)
 - Post Processing
 - Platform Impendence

Stack Rendering Example


 Combining two different renderers to create realistic reflections on top of an OpenGL rendered object



Hybrid Rendering - more results



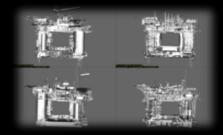
Multiple Rendering Example

New Demo Viewer coming in 2011
 with Multiple Rendering Capabilities

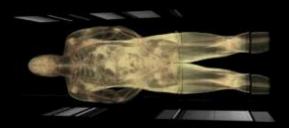
- Coordinates shader usage between OpenGL, CgFX, OptiX and iray
- Cross platform, using Qt
- Source will be available to registered developers

CompleX™ Scene Scaling Engine

Keeps complex scenes interactive as they exceed single GPU memory, by managing the combined memory and performance of multiple GPUs


Delivers smooth performance on very large scenes:

- 32GB in size on Quadro FX 5800
- 48GB in size on Quadro 6000


SDK for any OGL application

Ready to use in SceniX, OpenSceneGraph, and Open Inventor 8.1

SceniX and CgFX example

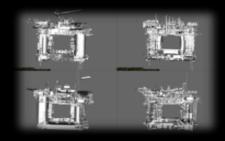
Quadro 6000 Demo Viewer

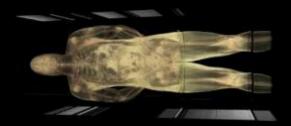
CompleX™ Example Companies

National Institute of Health

VSG Open Inventor

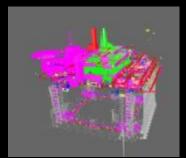
StormFjord & Statoil


CompleX™ - Distribute & Composite

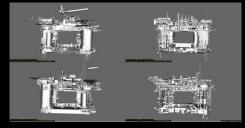

Made of two components, that can be used independently:

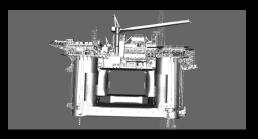
- Data Distribution
 - slicing scenes across GPUs to keep them within frame buffer memory
- Image Compositing
 - the fastest available image combination from multiple GPU outputs
- Multiple approaches for each component to accommodate different data and transparency needs

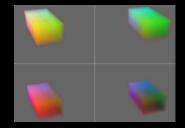


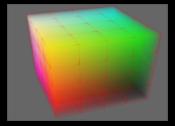

CompleX[™] - Methods

>500 million pixels/second




Screen Compositing




Depth Compositing

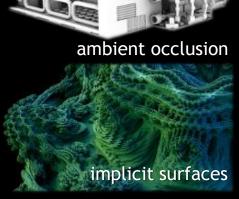
Alpha Compositing

CompleX[™] - Composite

The industry's fastest multi-GPU compositor (no SLI req'd)

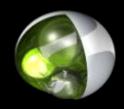
- Uses unique NVIDIA hw/driver features
 copy_tex_image across multiple GPUs
- Highly optimized for GPU to GPU: multiple transfer paths optimized for a wide variety of multi-GPU and chipset configurations.
- Results in the best performance for given HW
- Resulting event loop typically needs +2 lines of code

NVIDIA OptiX™ Ray Tracing Engine


A programmable ray tracing pipeline for accelerating interactive ray tracing applications - from functions, to tasks, to complete renderers.

In use within a wide variety of markets - not just rendering

- For Windows, Linux, and OSX on all CUDA capable GPUs
- C-based shaders/functions (minimal CUDA exp. needed)
- Ease of Development you concentrate on writing ray tracing techniques, and OptiX makes them fast


Applications benefit immediately from GPU advances:

- Highly scalable on cores and GPUs SLI not required
- GPU advances GF100 is 2-4X of GT200 which is 2X of G80
- OptiX advances 2.1 (this week) +30 to 80% faster than 2.0

OptiX™ - SDK Examples

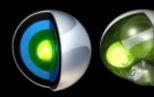
- Whitted
- Cook
- Photon Mapping
- Glass
- Fish Tank
- Collision Detection
- Modified SDK Example MandleBulb
- Fast AO

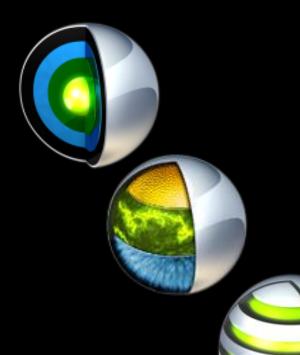
OptiX™ -Example Customers

+3k downloads / version

LIGHTWORKS
Rendering Realism

Privately at major companies doing:


- Radiation & Magnetic Reflection
- Acoustics and Ballistics
- Multi-Spectral Simulation
- Motion Picture production
- Massive On-Line Player Games

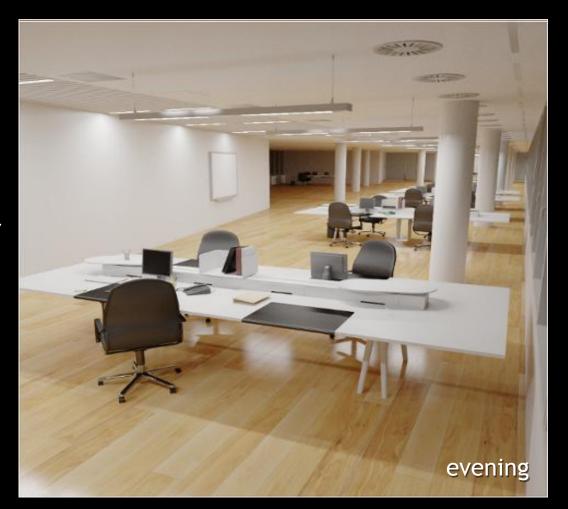

NVIDIA Design Garage Demo

- Photorealistic car configurator in the hands of millions of consumers
- Uses pure GPU ray tracing
 - 3-4X faster on GF100 than on GT200
 - Linear scaling over GPUs & CUDA Cores
 - Est. 40-50X faster vs. a CPU core
- Built on SceniX with OptiX shaders
 similar to other apps in development
- Rendering development speed
 - 6 weeks

Application Engine Availability

nvidia.com

Developer Zone


iray® from mental images

World's first commercial, physically correct, interactive global illumination renderer - greatly speeding the creative workflow for designers with intuitive results that match the real world.

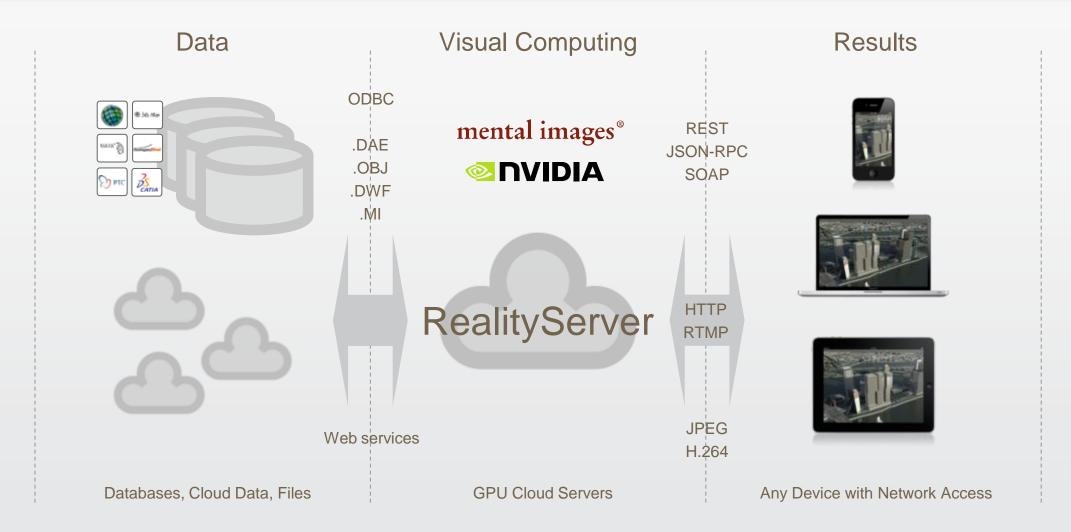
Scalable across processors and nodes for maximum interactivity. Many times faster on GPUs than CPU.

Availability:

- w/ mental ray® 3.8 & RealityServer
- stand-alone Integrator Edition
- Coming to SceniX in 2011
- Integrated in Bunkspeed Shot,Autodesk 3ds Max 2011, DS Catia v6

mental images®

Worldwide Leader in Photorealistic Rendering


STANFORD UNIVERSITY

iray is the new CUDA-accelerated rendering mode inside mental ray 3.8, RealityServer 3.0 and other products.

- See full global illumination effects in seconds
- Quickly preview final frame quality in selected image areas
- Work without learning render-specific parameters
- Render final frames with complex global illumination effects much faster than CPU renderers
- Less overhead from tuning scenes and shaders

RealityServer®

RealityServer®

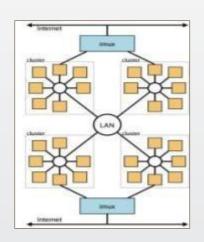
The server based architecture of RealityServer give the following key advantages over traditional client-side technologies:

- Independence from Data Complexity
- Thin Clients
- Collaboration
- Data security
- Scalability
- Development Choice
- State of the art Rendering

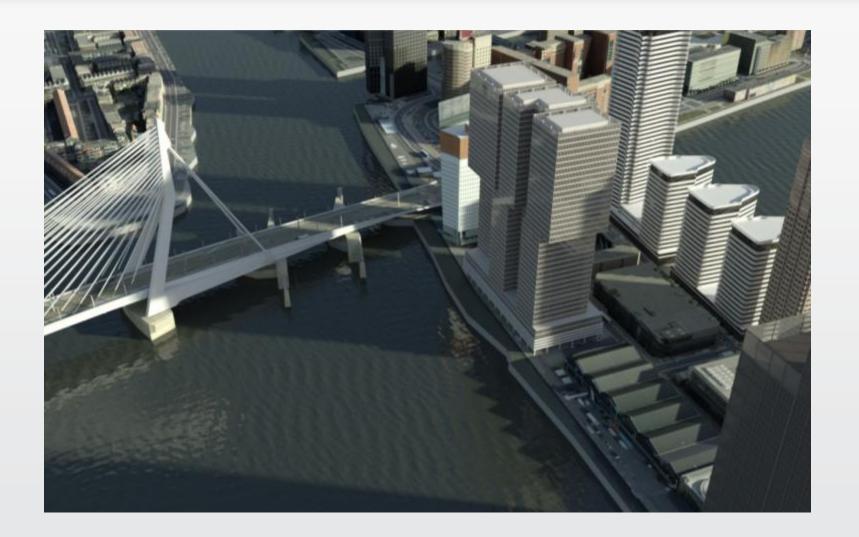
GPU Cloud Computing

A significant trend is arising towards Cloud Computing for large scale deployments. RealityServer is ideal for Cloud Computing:

- Successfully deployed on:
 - Amazon EC2
 - PEER 1
 - Penguin Computing
- Web Services significantly ease communication with other Cloud resources or off-Cloud resources
- Straightforward way to scale with RealityServer resource requirements



DiCE™ Distributed Computing Environment


RealityServer is built on our proprietary DiCE technology. It is ideally suited to Cloud based deployments:

- Master-less self-organizing cluster architecture
- Fault-tolerant in-memory distributed database
- Automated load balancing across resources (CPUs, GPUs)
- Dynamically add and remove computing resources
- Large scale clustering over GbE and 10GbE networks
- Multi-user by design
- Targeting very low latencies and large numbers of jobs
- Cloud specific clustering modes for Unicast only networks

Demo mental images[®]

mental images®

Thank you!

• Questions?