

GPU TECHNOLOGY: PAST, PRESENT, FUTURE

Marc Hamilton, Vice President, Solution Architecture and Engineering

A Decade Of GPU Computing

- From Scientific Computing To Machine Learning
- Mobile Is More Than Just Phones
- GPU Architecture & CUDA Roadmap
- Grid & The Last Mile of Virtualization

From Scientific Computing To Machine Learning

ResQU

UNIVERSITY OF ILLINOIS

Giving Drones the Vision to Help Fight Fires

A Breakthrough in HIV Research

HOLOGIC

Early, Accurate Detection of Breast Cancer

The Green500 List

Listed below are the June 2014 The Green500's energy-efficient supercomputers ranked from 1 to 100.

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	4,389.82	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x	34.58
2	3,631.70	Cambridge University	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62
3	3,517.84	Center for Computational Sciences, University of Tsukuba	HA-PACS TCA - Cray 3623G4-SM Cluster, Intel Xeon E5- 2680v2 10C 2.800GHz, Infiniband QDR, NVIDIA K20x	78.77
4	3,459.46	SURFsara	Cartesius Accelerator Island - Bullx B515 cluster, Intel Xeon E5-2450v2 8C 2.5GHz, InfiniBand 4× FDR, Nvidia K40m	44.40
5	3,185.91	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries Interconnect , NVIDIA K20x Level 3 measurement data available	1,753.66
6	<mark>3,131.06</mark>	ROMEO HPC Center - Champagne-Ardenne	romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR, NVIDIA K20x	81.41
7	3,019.72	CSIRO	CSIRO GPU Cluster - Nitro G16 3GPU, Xeon E5-2650 8C 2GHz, Infiniband FDR, Nvidia K20m	86.20
8	2,951.95	GSIC Center, Tokyo Institute of Technology	TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x	927.86
9	2,813.14	Exploration & Production - Eni S.p.A.	HPC2 - iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, NVIDIA K20x	1,067.49
10	2,678.41	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	54.60
11	<mark>2,629.42</mark>	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR, NVIDIA K20x	66.25
12	2,629.42	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR, NVIDIA K20x	66.25
13	2,629.42	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR, NVIDIA K20x	66.25
14	2,629.42	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR, NVIDIA K20x	66.25
15	2,629.10	Max-Planck-Gesellschaft MPI/IPP	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	269.94

TSUBAME KFC #1 OF "TOP 15" GREEN SUPERCOMPUTERS POWERED BY CUDA GPUS

MACHINE LEARNING

Branch of Artificial Intelligence Computers that learn from data

HINE NING

person

helmet

motorcycle

THREE TRENDS CONVERGING

Deep Learning with COTS HPC Systems

A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro

Stanford / NVIDIA • ICML 2013

"Now You Can Build Google's \$1M Artificial Brain on the Cheap "

-Wired

GOOGLE BRAIN 600 kWatts 1,000 CPU Servers \$5,000,00 2,000 CPUs • 16,000 cores Ω

STANFORD AI LAB

CUDA FOR MACHINE LEARNING

Use Cases

Early Adopters

Adobe

Image Analytics for **Creative Cloud**

Speech/Imag Recognition

Image Classification Hadoop

NETFLIX

Recommendati on

Image Detection Face Recognition **Gesture Recognition** Video Search & Analytics Speech Recognition & Translation

> **Recommendation Engines** Indexing & Search

Prominent Research

NYU

STANFORD UNIVERSITY

DENSO

Carnegie Mellon University

Massachusetts Institute of Technology

Mobile - More Than Just Phones

TEGRA TK1

UNIFIED ARCHITECTURE

TEGRA K1 - MOBILE SUPER CHIP

BREAKTHROUGH EXPERIENCES

JETSON TK1 DEV KIT 1ST MOBILE SUPERCOMPUTER FOR EMBEDDED SYSTEMS

192 CUDA cores

326 GFLOPS

VisionWorks SDK

EVOLUTION OF COMPUTING IN THE CAR

TEGRA TK1 SUPERCOMPUTER FOR DRIVER ASSISTANCE

Pedestrian Detection Blind Spot Monitoring Lane Departure Warning Collision Avoidance Traffic Sign Recognition Adaptive Cruise Control

Optical Flow

Histogram

Feature Detection

Mid Range Radar

COMPUTER VISION ON CUDA

Feature Detection / Tracking ~30 GFLOPS @ 30 Hz Object Recognition / Tracking ~180 GFLOPS @ 30 Hz 3D Scene Interpretation ~280 GFLOPS @ 30 Hz

GPU Architecture & CUDA Roadmap

FAST PACED CUDA GPU ROADMAP

BANDWIDTH BOTTLENECKS

PCI Express16GB/secCPU Memory60GB/secGPU Memory288GB/sec

PCle GPU CPU

INTRODUCING NVLINK

Differential with embedded clock PCIe programming model (w/ DMA+) Unified Memory Cache coherency in Gen 2.0 5 to 12X PCIe

5X MORE BANDWIDTH FOR MULTI-GPU SCALING

3D MEMORY

3D Chip-on-Wafer integrationMany X bandwidth2.5X capacity4X energy efficiency

PASCAL

5 to 12X PCIe 3.0 **NVLink** 3D Memory 2 to 4X memory BW & size Module 1/3 size of PCIe card

Power Regulation

CUDA-ENABLED GPUS

CUDA DOWNLOADS

ACADEMIC PAPERS

UNIVERSITY COURSES

522M 2.5M 58K

CUDA EVERWHERE

GOALS FOR THE CUDA PLATFORM

Simplicity

• Learn, adopt, & use parallelism with ease

Productivity

• Quickly achieve feature & performance goals

Portability

• Write code that can execute on all targets

Performance

• High absolute performance and scalability

UNIFIED MEMORY DRAMATICALLY LOWER DEVELOPER EFFORT

Developer View Today

Developer View With Unified Memory

REMOTE DEVELOPMENT TOOLS

Local IDE, remote application

- Edit locally, build & run remotely
- Automatic sync via ssh
- Cross-compilation to ARM

Target Systems		⇔ ♥ ⇔ ▼			
Select remote con	Manage				
Local System		×			
Project Path:	/home/harrism/cuda-workspace/test				
Toolkit:	CUDA Toolkit 6.0 (/usr/local/cuda-6.0/bin/)				
CPU Architecture:	Native ‡				
harrism@localhost 🛛 🗱					
Project Path:	/home/harrism/src/test	Browse			
Toolkit:	/usr/local/cuda/bin	Manage			
CPU Architecture:	Native 🛟				

Full debugging & profiling via remote connection

EXTENDED (XT) LIBRARY INTERFACES

29 🛞 DVIDIA

Automatic Scaling to multiple GPUs per node

cuFFT 2D/3D & cuBLAS level 3

Operate directly on large datasets that reside in CPU memory developer.nvidia.com/cublasxt 7.9 TFLOPS

8

16K x 16K SGEMM on Tesla K10

GRID Graphics Accelerated VDI The Original Graphics GPU Returns To The Data Center

NVIDIA Grid GPUs Power Enterprise Virtualization 2.0

IMPORTANCE OF A GPU

COMMERCIAL MARKETS

MUST HAVE

NIGHT AND DAY DIFFERENCE

Without GPU

GRID ACCELERATED GRAPHICS

Thank You