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Valuation  

• Discretized time and space 

• Market factor dynamics described 

through transition probability matrices 

•  Matrices can be used for both: 

– Stepping forward in Monte-Carlo 

simulation for counterparty credit risk 

– Backward induction to price derivatives 

• Calculation builds on matrix algebra 

– Very fast implementation using modern 

GPU technology 
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Valuation, cont. 

• Start from a general model for the underlying 

  

• Use probability theory to generate the transition 

probability matrix at a (very) short time period 

 

 

 

• Multiply the transition matrix by itself to generate longer 

period matrices 
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Advantages 

• Consistency in market dynamics 

– Traditional approaches using one dynamic for MC generation and another dynamic for 

pricing (implied by standard pricing models) 

• Realistic models for market dynamics 

– Numerical approach means that you are not confined to models with analytical 

solutions 

– Caters for wrong-way risk 

• Simple implementation of new products 

– Only the pay-off profile need to be described 

• Very fast calculations when designed for new hardware 

– All prices for all paths is pre-calculated during the valuation step 

– Enables many more MC simulations which also increase accuracy 
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The method is developed by Claudio Albanese 

www.albanese.co.uk 

 

More information regarding the method can 

be found here:  

 

Coherent global market simulation and 

securitization measures for counterparty 

credit risk 

 

http://www.albanese.co.uk
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf


System Overview 
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triCalculate Overview 
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Architecture 
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Architectural Goals 

 Device Agnostic 

 MKL and CUDA 

 Portable 

 Linux (Prod), OSX and Windows (Development) 

 Simple and natural programming model  

 Universal language of mathematics 

 Application code has no knowledge about devices, 

threads and other complicated stuff 

 Testable 

 700+ tests, executed at every code commit 

 Fast Enough! 

 Simplicity over performance as long as it fast enough 
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ComputeEngine 

High Level Architecture 
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made easy 
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ComputeEngine – Low Level API 

 Device Management 

 ceGetDeviceCount, ceEnumDevices, ceCreateDC 

 Memory management 

 DataHandle, ceAllocateData, ceFreeData 

 Supported Types: Vector, Matrix, Float, Double, Integer 

 Devices has their own memory manager 

 Operations 

 Linear Algebra: e.g. FastExp, Floor, Multiplication (MS, MV, MM) 

 Financial Operations: e.g. ceAddCashFlows, ceGetDailyDiscountFactors  

 Asynchronous execution 

 ceAddJobToQueue 
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ComputeEngine – High Level API 
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typedef Matrix<float> FloatMatrix;  

 

MatrixFactory mf(DeviceType::CUDA); // DeviceType::MKL 

 

FloatMatrix m = mf.CreateMatrix(3, 3, 1.0f); 

 

m *= 0.005f; 

 

FloatMatrix id = mf.CreateIdentityMatrix(3); 

 

m = m + id; 

 

m.FastExp(3); 

 A matrix factory represents a device (e.g. CUDA or MKL 

(CPU)).  

 A matrix factory knows how to create data types (e.g. vectors, 

matrices, etc.) on a specific device.  

 All operations on data types are executed on a specific 

device without memory transitions 



Parallel Execution Model 

 Calculations are partitioned into jobs 

 When a job is scheduled for execution that job is 

assigned a matrix factory (a device) 

 Jobs are scheduled over all available matrix 

factories 

 As soon as a job is done it returns its matrix factory 

to the scheduler 
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Performance 

Portfolio  

 5727 trades, IR Swaps, cap-floor, swaptions 

and FX forwards in several currencies 

 505 counterparties 

 81 time steps 

 

Valuation (2 K40) 

 Generated data 15 GB 

 Took 84 seconds 

 

Simulation (2 CPU, 12 cores each) 

 100,000 scenarios 

 Took ~2 minutes 24 seconds  
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Pros and Cons 

Pros 

 Device Agnostic 

 Easy and Intuitive to use – mathematical notation 

 Sandbox development 

Cons 

 Performance is not optimal 
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Thank You 

patrik.tennberg@trioptima.com 

www.trioptima.com  

http://www.trioptima.com/

