
The anatomy of a GPU based

counterparty credit risk system

Patrik Tennberg, TriOptima

July 10th 2014

Agenda

A new methodology for counterparty
credit risk calculations

System Overview

Architecture

CUDA made easy

2

A new methodology

for counterparty

credit risk

calculations

3

Valuation

• Discretized time and space

• Market factor dynamics described

through transition probability matrices

• Matrices can be used for both:

– Stepping forward in Monte-Carlo

simulation for counterparty credit risk

– Backward induction to price derivatives

• Calculation builds on matrix algebra

– Very fast implementation using modern

GPU technology

4

t0

100

t1

P = 0.05

120 110 100 90 80

120 0.9 0.07 0.03 0 0

110 0.03 0.9 0.05 0.02 0

100 0.01 0.05 0.88 0.05 0.01

90 0 0.02 0.05 0.9 0.03

80 0 0 0.03 0.07 0.9

110

120

90

80

Valuation, cont.

• Start from a general model for the underlying

• Use probability theory to generate the transition

probability matrix at a (very) short time period

• Multiply the transition matrix by itself to generate longer

period matrices

5

 dttdNStdWStdtSttdtdS ttt
t

ttat t

)()()()()()(

120 110 100 90 80

120 0.99 0.01 0 0 0

110 0.01 0.98 0.01 0 0

100 0 0.01 0.98 0.01 0

90 0 0.02 0.01 0.98 0.01

80 0 0 0 0.01 0.99

Sdt

Advantages

• Consistency in market dynamics

– Traditional approaches using one dynamic for MC generation and another dynamic for

pricing (implied by standard pricing models)

• Realistic models for market dynamics

– Numerical approach means that you are not confined to models with analytical

solutions

– Caters for wrong-way risk

• Simple implementation of new products

– Only the pay-off profile need to be described

• Very fast calculations when designed for new hardware

– All prices for all paths is pre-calculated during the valuation step

– Enables many more MC simulations which also increase accuracy

6

7

The method is developed by Claudio Albanese

www.albanese.co.uk

More information regarding the method can

be found here:

Coherent global market simulation and

securitization measures for counterparty

credit risk

http://www.albanese.co.uk
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf
http://www.albanese.co.uk/gmcse.pdf

System Overview

confidential - sensitive 8

triCalculate Overview

9

Valuation

Parse Portfolio

Simulation

Client Service

Manager

simulationengine_cli valuationengine_cli

meta data,

valuation tables,

discount factors,

default

probabilities,

transition kernels

PV for all trades.

Frates

Portfolio Available Upload Portfolio

Start

Batch

Result

Available

Architecture

confidential - sensitive 10

Architectural Goals

 Device Agnostic

 MKL and CUDA

 Portable

 Linux (Prod), OSX and Windows (Development)

 Simple and natural programming model

 Universal language of mathematics

 Application code has no knowledge about devices,

threads and other complicated stuff

 Testable

 700+ tests, executed at every code commit

 Fast Enough!

 Simplicity over performance as long as it fast enough

11

ComputeEngine

High Level Architecture

12

MKL

Financial Services

API

Valuation Simulation

Models

Curves

Trades

API

Pricers

M. Factors

Calibration

Scenarios

Simulation

API

Evaluator

Common

Export / Import

Logging

API

System

Linear Algebra

CUDA ?

Date / Time Math

made easy

13

ComputeEngine – Low Level API

 Device Management

 ceGetDeviceCount, ceEnumDevices, ceCreateDC

 Memory management

 DataHandle, ceAllocateData, ceFreeData

 Supported Types: Vector, Matrix, Float, Double, Integer

 Devices has their own memory manager

 Operations

 Linear Algebra: e.g. FastExp, Floor, Multiplication (MS, MV, MM)

 Financial Operations: e.g. ceAddCashFlows, ceGetDailyDiscountFactors

 Asynchronous execution

 ceAddJobToQueue

 14

ComputeEngine – High Level API

15

typedef Matrix<float> FloatMatrix;

MatrixFactory mf(DeviceType::CUDA); // DeviceType::MKL

FloatMatrix m = mf.CreateMatrix(3, 3, 1.0f);

m *= 0.005f;

FloatMatrix id = mf.CreateIdentityMatrix(3);

m = m + id;

m.FastExp(3);

 A matrix factory represents a device (e.g. CUDA or MKL

(CPU)).

 A matrix factory knows how to create data types (e.g. vectors,

matrices, etc.) on a specific device.

 All operations on data types are executed on a specific

device without memory transitions

Parallel Execution Model

 Calculations are partitioned into jobs

 When a job is scheduled for execution that job is

assigned a matrix factory (a device)

 Jobs are scheduled over all available matrix

factories

 As soon as a job is done it returns its matrix factory

to the scheduler

16

Jn

J2
MF2

Scheduler

K401

J1
MF1

K402

Performance

Portfolio

 5727 trades, IR Swaps, cap-floor, swaptions

and FX forwards in several currencies

 505 counterparties

 81 time steps

Valuation (2 K40)

 Generated data 15 GB

 Took 84 seconds

Simulation (2 CPU, 12 cores each)

 100,000 scenarios

 Took ~2 minutes 24 seconds

17

Pros and Cons

Pros

 Device Agnostic

 Easy and Intuitive to use – mathematical notation

 Sandbox development

Cons

 Performance is not optimal

18

Thank You

patrik.tennberg@trioptima.com

www.trioptima.com

http://www.trioptima.com/

